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Abstract—This paper reviews some of the more uselul, current and
newly developing methods for the selution of electromagnetic fields. It
heging with an introduction to pumerical methods in general, including
specific references to the mathematical iools required for feld analysis,
€.g., solution of systems of simultaneous linear equations by direct and
jterative means, the matrix cigenvalue problem, finite difference differ-
entiation and integration, crror estimates, and common {ypes of hourdary
conditions. This is fellowed by a description of finite difference solution
of boundary and initial valee problems. The paper reviews the mathe-
matical principles behind variatiooal methods, from the lilbert space
point of view, for both cigenvalue and dererministic problems. The signifi-
cinee of natura] boundary conditions is pointed out, The Rayleigh-Ritz
approach for determining the minimizing sequence is explained, followed
Iy a brief descriplion of the finite clement method, The paper conciudes
with an introduction to the technigues and importance of hybrid compuia-

tion,
1. TNTRODUCTION

N YHENEVER ONE devises a mathematical expression
to solve a field quantity, one must be concerned
with numerical analysis. Other than those engineers

involved exclusively in measurements or in the prool of gen-
eral existence theorcms or in administration, the remainder
of us are numerical analysts to a degrec. Whenever we pre-
scribe a sequence of mathematical operations. we are design-
ing an algorithm. A theory is to us a means ol extrapolating
our experiences in order to make predictions. A mathemal-
ical theory, of a physical problem, produces numbers and a
good theory produces accurate numbers easily.

To obtain these numbers, we must employ processes that
produce the required accuracy in a finite number of steps
performed in a finite time upon machines having fintte word
length and storc. Accepting these constraints we ask how
best to perform under them.

As far as engineers are concerned, there is no prineipal
difference between analvtical and nwmerical approaches.
Both are concerned with numbers. Oftentimes, the so-called
“unalytical” approach—as though to claim incfficicncy us a
virtuc—is none other than the algorithmically impotent one,

The contrast between efficient and inefficient computation
is eimphasized whenever anything beyond the most trivial
work is performed. As an example, consider the solution of a
set of simultaneous, linear equations by Cramer’s rule in
which each unknown is found as a ratio of two determinants,
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A moment’s reflection will show that calculating these deter-
minants by cvaluating all their cofactors 1% 4n Insurmount-
able task when the order 1s not small. Expanding along each
row, & coflactors, each of order n--1, arc involved. Each of
these has cofactors of order n—2 and so en. Continuing in
this way, we find that at least »! multiplications are nceded

"0 expand the deierminant. Neglecting all other operations,

und assuming that the computer does one million mubipli-
cations per second, we find that it would take more yeurs
than the universe is old o expand a determinant of order 24,
Even then, due to roundoff ecrors, the reliability of the result
will be questionable. Cramer’s rule then is surely not a useful
algorithm except for the smallest systems. bt is certainly of
the greatest importance in general prools and existence theo-
rems but is virtnally useless for getting numerical answers,

Wilkinson, in a statement referring to the algebraic
eigenvalue problem [23, Prefuce] said © . . . the problem has
a deceptively simple formulation and the background theory
has been known for many years; yet the determination of
accurate solutions presents a4 wide varicty ol challenging
problems.” He would likely agree that the statement applies
equally to most of numerical analysis.

This paper is concerned with the solution of fields by
efficient. current and newly developing., computer practices.
1t is intended as an introduction for those totally unfumiliar
with numerical analysis, as well as for thosc with some ex-
perience in the field. For the sake of consistency, many topics
had 1o be deleted including numerical conformal mapping,
point matching, mode matching and many others. Propo-
nents of these techniques should not feel slighted as the
author has himself been involved in one of them. In addi-
tion, it was felt advisable to concentrate on gencral numeri-
ca! methods relevant to the microwave engineer, rather than
to review particular problems. Companion papers, in this
special issue, furnish many specific examples,

The principal methods surveyed are those of finite differ-
ences, variational, and hybrid computer technigques. Appro-
priate mathematical concepts and notations are introduced
as an aid to further study of the literature, Some of the refer-
ences, found to be the most useful for the author, are classi-
fied and listed in the bibliography.

I1. SysTEMS OF LINEAR LOUATIONS

The manipulation and solution of large sets of {ipear,
simultancous equations is basic to most of the techniques
employed in computer solution of ficld problems. These lin-
car cquations are the consequence of certain :lpproximi':'
tions made to expedite the solution. For cxample, approxr
mation of the operator {¥2, often) over a finite set of POi"IS
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WEXLER: COMPUTATION OF ELECTROMAGNETIC FIELDS

at which the field is to be computed (as in finite differences),
or approximation of the field estimate (as in variational
methods) causes the problem to be modeled by simultaneous
equations. These equations are conveniently represented by
matrices. It happens, and we shall see why in succeeding sec-
tions, that the finite difference approach creates huge, sparse
matrices of order 5000 to 20 000. Sparseness means that there
are very few nonzero elements, perhaps a tenth of one per-
cent. On the other hand, variational methods tend to pro-
duce matrices that are small (typically of order 50), but dense
by comparison.

The size and density of these matrices is of prime impor-
tance in determining how they should be solved. Direct meth-
ods requiring storage of all matrix elements are necessarily
limited to about 150 unknowns in a reasonably large mod-
ern machine. On the other hand, it turns out that iterative
techniques often converge swiftly for sparse matrices. In
addition, if the values and locations of nonzero elements are
easily computed (as occurs with finite differences) there is no
point in storing the large sparse matrix in its entirety. In
such cases, only the solution vector need be stored along
with five nonzero elements (the number produced by many
finite difference schemes) at any stage of the iterative process.
This maneuver allows systems having up to 20 000 unknowns
to be solved.

This section deals with examples of direct and iterative
technigues for the solution of systems of simultaneous linear
equations. This is followed by a method for solving the
eigenvalue problem in which the entire matrix must be stored
~§ butall eigenvectors and eigenvalues are found at once. Solu-
tion of the eigenvalue problem, by an iterative technique, is
reserved for Section IV where it is more appropriate.

A. Solution by Direct Methods

One of the most popular algorithms for the solution of
systems of linear equations is known as the method of Gauss.
It consists of two parts—elimination (or triangularization)
and back substitution. The procedure is, in principle, very
simple and is best illustrated by means of an example.

We wish to solve the system

Ax = b (1)

where A is an nX#n matrix, x and b are n-element vectors
(column matrices). b is known and x is to be computed.
Consider, for convenience, a small set of equations in three
unknowns xi, X2, and Xs.
1+ 4w+ 23 = 7
Z1+ 6z, — 3 =13
21)1 — X2 + 2.1’73 = 5.
~This example is from [9, pp. 187-188]. Subtract the first
equation from the second of the set. Then subtract twice the

es first from the last. This results in

2: ot A+ xs= T
(- 2ry — 223 =

ts — 92, + Ozs = —9.
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The first equation, which was used to clear away the first
column, is known as the pivot equation. The coefficient of the
equation, which was responsible for this clearing operation,
is termed the pivot. Now, the first term of the altered second
equation is made the pivot. Adding 4.5 times the second
equation to the last, we obtain

21+ 42+ T3 = 7
2zs — 2z = O
- 93:3 = 18.

Clearly, in the computer there is no need to store the equa-
tions as in the preceding sets. In practice, only the numerical
values are stored in matrix form with one vector reserved for
the as yet unknown variables. When the above procedure is
completed, the matrix is said to have been triangularized.

The final step, back substitution, is now initiated. Using
the last equation of the last set, it is a simple matter to solve
for xs= —2. Substituting the numerical value of x; into the
second equation, x.=1 is then easily found. Finally, from
the first equation, we get x1=5. And so on back through all
the equations in the set, each unknown is computed, one at
a time, whatever the number of equations involved.

It turns out that only 73/3 multiplications are required to
solve a system of  real, linear equations. This is a reasonable
figure and should be compared with the phenomenal amount
of work involved in applying Cramer’s rule directly. In addi-
tion, the method is easy to program.

This simplified account glosses over certain difficulties
that may occasionally occur. If one of the pivots is zero, it is
impossible to employ it in clearing out a column. The cure is
to rearrange the sequence of equations such that the pivot is
nonzero. One can appreciate that even if the pivot is nonzero,
but is very small by comparison with other numbers in its
column, numerical problems will cause error in the solution.
This is due to the fact that most numbers cannot be held
exactly in a limited word-length store. The previous exam-
ple, using integers only, is exceptional. Typically, depending
on the make of machine, computers can hold numbers with
7 to 11 significant digits in single precision.

To illustrate the sort of error that can occur, consider the
example, from [15, p. 34]. Imagine that our computer can
hold only three significant digits in floating point form. It
does this by storing the three significant digits along with an
exponent of the base 10. The equations

1.00
2.00

1.00 X 10_4.131 + 1001:2

I

are to be solved. Triangularizing, as before, while realizing
the word-length limitation, we obtain

1.00 X 10~%r; + 1.00x: =  1.00
— 1.00 X 10%z, = — 1.00 X 10%

Solving for x, then back-substituting, the computed result
is x,= 1.00 and x,=0.00 which is quite incorrect. By the sim-.
ple expedient of reversing the order of the equations, we find
the result x,=1.00 and x;=1.00 which is correct to three
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significant digits. The rule then is, at any stage of the com-
putation, to select the largest numerical value in the relevant
column as the pivot and to interchange the two equations
accordingly. This procedure is known as a partial pivoting
strategy. Complete pivoting strategy involves the interchange
of columns as well as rows in order to use the numerically
largest number available in the remaining equations as the
pivot. In practice, the results due to this further refinement
do not appear to warrant the additional complications and
computing time.

The previous example suffered from a pure scaling prob-
lem and is easily handled by a pivoting strategy. On the other
hand, except for the eigenvalue problem, nothing can be
done about solving a system of linear equations whose co-
efficient matrix is singular. In the two dimensional case,
singularity (i.e. the vanishing of the coefficient matrix de-
terminant) means that the two lines are parallel. Hence, no
solution exists. A similar situation occurs with parallel
planes or hyperplanes when the order is greater than two. A
well-conditioned system describes hyperplanes that intersect
at nearly 90°. The intersection point (or solution) is relatively
insensitive to roundofl error as a consequence. If hyperplanes
intersect at small angles, roundoff error causes appreciable
motion of the intersection point with a low degree of trust
in the solution. Such systems are termed ill-conditioned.

Tt is unnecessary, and wasteful, to compute the inverse A™*
in order to solve (1). Occasionally, however, a matrix must
be inverted. This is reasonably easy to accomplish. One of
the simplest methods is to triangularize A, as previously de-
scribed, and then to solve (1) n times using a different right-
hand side b each time. In the first case b should have 1 in its
first element with zeros in the remainder. The 1 should then
appear in the second location for the next back-substitution
sequence, and so on. Each time, the solution gives one col-
umn of the inverted matrix and n back-substitutions produce
the entire inverted matrix. See [12, pp. 32-33]. The pro-
cedure is not quite so simple when, as is usually advisable, a
pivoting strategy is employed and when one wishes to tri-
angularize 4 only once for all n back-substitutions. IBM
supplies a program called MINV which does this, with a
complete pivoting strategy, in an efficient fashion.

Westlake [24, pp. 106-107] reports results of inverting a
matrix of order n=>50 on CDC 6600 and CDC 1604A ma-
chines. Computing times were approximately 0.3 and 17
seconds, respectively. These figures are about double that
predicted by accounting only for basic arithmetic opera-
tions. The increased time is due to other computer operations
involved and is some function of how well the program was
written. Tests run on the University of Manitoba IBM
360/65 showed that MINV inverts a matrix of order 50 in
3.38 seconds. The matrix elements were random numbers in
the range 0 to 10.

Note that the determinant of a triangular matrix is simply
the product of the diagonal terms.

The elimination and back-substitution method is easily
adapted to the solution of simultaneous, linear, complex
equations if the computer has a complex arithmetic facility,
as most modern machines do. Failing this, the equations can
be separated into real and imaginary parts and a program

designed for real numbers can then be used. The latter pro-
cedure is undesirable as more store and computing time is
required.

Other inversion algorithms exist, many of which depend
upon particular characteristics of the matrix involved. In
particular, when a matrix is symmetric, the symmetric
Cholesky method [3, pp. 76-78 and 95-97] appears to be
the speediest, perhaps twice as fast as Gauss’s method. Under

the above condition, we can write
A=LL (2)
where the tilde denotes transposition. L is a lower triangular

matrix, i.e., nonzero elements occur only along and below
the diagonal as in

L={la l» OJ. (3)

l31 132 133

The elements of L may be easily determined by successively
employing the following equations:

apn = 1112, Az = lnln, a1z = 111131, A2z = [y + lzzz,

— 2 2 2 (4)
Aoz = 121131 + l‘mlu, a3z = I + lsz + l3s2.

Thus, the first equation of (4) gives Iy explicitly. Using /11,
the second equation supplies o1, and so on. This operation
is known as friangular decomposition.

The inverse of 4 is

At = [- = (L)L ®)

which requires the inverse of L and one matrix multiplica-
tion. The inverse of a triangular matrix is particularly easy
to obtain by the sequences

It = 1, Ly + lysay = 0,
Lz + lazer + lygwor = 0, lastee = 1, (6)

l30200 + 3359 = 0, lzsxs3 = 1.

In this way, a symmetric matrix is most economically

inverted.

From (4), it is clear that complex arithmetic may have to
be performed. However, if in addition to being symmetric 4
is positive definite as well, we are assured [3, p. 78] that only
real arithmetic is required. In addition, the algorithm is €x-

tremely stable.

B. Solution by Iterative Methods

Iterative methods offer an alternative to the direct meth-
ods of solution previously described. As a typical ith equd-
tion of the system (1), we have

n
-
> ax; = bi @
j=1
Rearranging for the ith unknown
b; 2. Qij
XT; = — Zj. (8)
(2271 i=1 Qi
s
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This gives one unknown in terms of the others. The intention
is 10 be able to make a guess at al{ variables x; and then suc-
cessively correct them, onc at a time, as indicated above.
Diffcrent strategies are available. One can, for example,
compute revised estimates of all x; using the previously
assumed values. Upon completion of the scan of all equa-
tions, the old values are then overwritten by the new ones.

Intuitively, it scems reasonable to usc an updated esti-
mate, just as soon as required, rather than to store it until
the equation scan is completed. With the understanding that
variables arc immediately overwritten in computation, we
have

L i L ] fr;
gt = — E g Z e o — @
§=1 {154 RN fhig

with 1 <i<#, m>0. m denotes the iteration count. The two-
part summation indicates that some varizbles are newly up-
dated. With this method, only n storage locations need be
available for the x; (in comparison with 2n by the previous
system), and convergence to the solution is more rapid
122, p. 111.

The difference between any two successive xy values cor-
responds to a correction term to be applied in updating the
current estimate. In order to speed convergence, it is possible
to overeorrect at each stage by a factor w. & usuaily lies be-
tween 1 and 2 and is often altered between successive scans
of the equation set in an attempt to maximize the conver-
gence rate. The iteration form is

z,imt1y = rm m{‘rl_(m+l} _ Ii{m)}
i—1
@i
S} . '
= Ji[ ¥ _+_ w{_ Z_.. .l-)(m_H' L
L ISR {\HJ}
n (i ) b’.]\
_ Z L :CJfH!) _ <f'tr'”” } .._.‘ .
ge-ird s L5358

Tt turns out that convergence to the solution is guaranteed
if matrix A is symmetric and positive definite [34, pp. 237~
238] and if 0w <2, Il @< 1 we have underrelaxation, and
oterrelaxation if o> 1. This procedure is known as successive
overrelaxation (SOR), there being no point in underreluxing.

Surprisingly, (10) can be described as a simple matrix
iterative procedure [22, pp. 58-59]. By expansion. it is easy
te prove that

(D — wI)xt+1y = 11 — @)D+ oF ] x" +wb (1)
L b

where D is a diagonal matrix consisting of the diagonal ele-

"ments of A, E consists of the negative of all its elements be-

neath the diagonal with zeros clsewhere, and Fis a matrix

having the negative of those elements above the diagonal of
-4, Rearranging (11),

k) = (D — wE) (L — @)D 4wk xi

{12)
+ w(D — wE)"th
Define the matrix accompanying x™ as
£y = (D — o)y {1 — D + wF}. (13)
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£, is known as the SOR iteration matrix and plays an impor-
tant role in convergence propertics of the method.
The iterative procedure can be rewritten

X(m+l} . ee_wa’.(m] _+, c (1})

where ¢ is the last term of (12). Of course, one does not
literally set up £, in order to perform the SOR process, but
£, and (14) cxpress mathematically what happens when the
algorithm described by (10) is implemented.

The process must be stationary when the solution is at-
taiged, i.e., xmr =y =y, Thercfore, we must have that

c={— Lux (13}
Substitute (15) into (14) and rearrange to obtain
xUaFD — g = L fx) - x). {16}

These terms are clearly error vectors as they consist of ele-
ments giving the difference between exuct and computed val-
ues. At the mth iteration, the form is

gl = x et — x, {17}

Therefore (16} becomes

L.Im+1) — .-E-wl:fm} s ‘Bwﬂg{m—])

L= '_Emm!lsfi]] [1:\J
due to the recursive definition of (16). Tt is thercfore clear
that the error tends to vanish when matrix £, tends to vanish
with cxpenentiation. Tt can be proved [22, pp. 13-15] that
any matrix 4 raised to a power 7 vanishes as r— o it and
only if each eigenvalue of the matrix is of ubsolute value less
than one. It is easy to demonstrate this for the special case
of a real, nonsymmetric matrix with distinct eigenvalues. We
cannot be sure that £, (which is pol symmetric in general)
has only distinct eigenvalues, but we will assume this for pur-
poscs of illustration. In this case all eigenvectors are linearly
independent. Therefore, any arbitrary error vector ¢ may
be cxpressed as a lincar combination of cigenvectors I; of
L., 1,
ces Tt anda (19

If the cigenvectors are known, the unknown g; may be found
by solving a system of simultaneous lincar equations. As the
I, are linearly independent, the square matrix consisting of
clements of all the 1, has an inverse, and so a solution must
eXist.

Performing the recursive operations defined by (I8), we
obtain

£ =y T ks +

gt = f[l,ulmfl E GQ.U-','_mI‘_’ _"I— T + ﬂ',“u“m.!“ {,2[))

where u; is the cigenvalue of £, corresponding to the eizen-
vector 1. It is obvious, from (20), that if ali eigenvalues of
£, are numerically less than unity, SOR will converge to the
solution of (1). In the litcrature, the magnitude of the lurgest
cigenvalue 1s known as the speciral radius p{£.).

It is also casily shown that the displacement vector &,
which states the difference between iwo successive x esti-
mates, can replace ¢ in (18)20).

A sufficient, although often overly stringent condition, for
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the convergence of SOR is that the coefiicient matrix 4 dis-
play diagonal dominance. This occurs if, in each row ol 4,
the sum of the absolute values of all off-diagonal terms is
greater than the ahsolute value of the diagonal term itself,

In practice, we are concerned not only with whether or not
convergence will oceur, but also with its speed. Equation (20)
indicates that the smailer the spectral radius of £,, the more
papidly convergence OCCUIsS. As indicated by the subscript,
£, and its cigenvalues are some function of the acceleration
factor w. The relationship between o and the spectral radius
p(£.) 15 & very complicated one and so only very rarely can
the optimum acceleration factor wy: be predicted in ad-
vance. However, some useful schemes exist for successively
approximating wnee a8 computation proceeds (sec [141,
15 [17] {200

Ta conclude, the main advantage of S$OR is that it is un-
necessary to store zero elements of the square matiix as is
required by many direct methods. This is of prime mpor-
rance for the solution of difference equations which require
only the vector to be stored. Also, the iteration procedure
tends to be sclf-correcting and 50 roundofl errors are some-
what restricted. There are direct methods that economize on
empty matrix clements, but SOR is perhaps the easiest way
to accomplish this end.

C. The Matrix Eigenvalie Problem

The general matrix cigenvalue problem is of the form
(4 —AB)x =0 21}

where 4 and B are square matrices. This is the form that re-
cults from a variational solution (see Scction V). The prob-
lem is to find eigenvalues A and associated elgenvectors x
such that (21) holds. Ths represents @ system of lincar,
homogeneous cquanons and so a solution can exist only if
determinant of (4—M\B) vapishes. IF 4 and B are known
matrices, then a solution can exist only for values of X which
make the determinant vanish. Eigenvectors can be found that
correspond to this sct of cigenvalues. Tt is not & practical
proposition to find the cigenvalues simply by assumiing trial
X values and evaluating the determinant each time until it is
found to vanish. Such a procedure is hopelessly inefficient.

An algorithm for matrices that are small enough to be
held entirely in the fast store (perhaps n= 100} 1s the Jacobi
method for real, symmetric matrices. Although 1t 1s not &
very efficient method, it is fairly easy to program and serves
as an cxample of a class of methods relying upon symmetry
and rotations to secure the solution ol the cigensystem.

[ B=/, the unit matrix, (21) becomes

(4 — M)x =0 (22)

which is the form obtained by Anite differcnce methods. If
A can be stored in the computer, and if A is symmetric as
well, a method using matrix rotations would be used. Equa-
tion (21) may not be put into this form, with symmetry pre-
served, simply by premultiplying by R-L The product ol two
synmetric matrices is not in general symmetric. THowever, if
we know that B is synumetric and positive defimte, triangular
decomposition {as described in Section 11-B) may be em-

ployed using only real arithmetic. Theretore
A —AB =4 —=LL

. o (23}
= Ll — L

where
¢ = L AL {(24)

Note that € equals € and 5o it is symmetric.
Taking the determinant of both sides of (23),

det (4 — AR) = det (12 det {C' = A} (25
Since det (L) is nonzero, We can sec that eigenvalues of 4
are those of C. Therefore, instead of (21), we can solve the

cigenvalue problem
(C — Ny =0 (20}

where

y = Lx, 20
We therefore obtain the required eigenvalues by solving (26).
Figenvectors y arc easily transformed to the required x by

inverting 7 in (27)-
Orthogonal matrices are basic to Jacobi's method. A

matrix T is orthogonal if
7T =L {28}

{f T consists of real clements, it is orthogonal if the sum of
the squares of the clements of cach column equals one and
if the sum of the products of corresponding clements in two
different columns vanishes. One example is the unit matrix

and another is
7 [cns I
sl

Matrix (29) can be imscrted in an otherwise unit matrix such
that the cos ¢ terms occur along the disgonal. This is also an
orthogonal matrix and we shall denote it ' as well.

Since the determinant of a product of several matrices
equals the product of the determinants, we Can seo from (28)
that det (T)=10r —1L. Therefore

det (A — Ay = det (T — AT
— Qut (TAT — X

- q’]. (29)
o= b

(30)

and so the eigenvalues of A and TAT are the same.

It is possible to 50 position (29) in any Jarger unit matn%,
and to fix a value of ¢, such that the transformed matrix
TAT has zeros in any chosen pair of symmetrically placed
elements. Usually one chooses to do this to the pair of ¢le-
ments having the largest bsolute vatucs. In doing this, ¢€T"
tain other elements are altered as well. The procedure is re-
peated successi vely with the effect that all of-diagonal terms
gracdually vanish leaving a diagonal matrix. The elements ©
a diagonal matrix are the eigenvalues and so these are
aiven simultaneously. Tt is possible to calculate the maximu
crror of the cigenvalucs at any stage of the process and 50 o
terminate the operation when sufficient accuracy is guar”
anteed. The product of all the transformation matrices ¥
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continuously computed. The columns of this matrix are the
gigenvectors of A. See [3,pp. 109- 1121and [7, pp. 129-131].
Probably the most efficicnt procedure, in both storage and
ame, is that due to Householder. It is described by Wilkin-
son [26] and, in a very rcadable form, by Wulden [23]
A method, employing SOR for large sparse matrices, is
gescribed in Section 1V,

T11. FINITE DHFFERENCES

The importance of finite differences lies in the ease with
which many logically complicated operations and functions
may be discretized. Operations are then performed not upon
continuous functions but rather, approximatcly, in terms of
values over a discrete point set. It is hoped that as the dis-
tance between points is made sufficicntly small, the approxi-
mation becomes increasingly accurate. The great advantage
of this approach is that operations, such as differentiation
and integration, may be reduced to simple arithmetic forms
and can then be convenicently programmed for automatic
digital computation. In short, complexity is exchanged for
labor.

A. Differentiation

First of all, consider differentiation. The analytic approach
often requires much logical subtlety and algebraic innova-
tion. The numerical method, on the other hand, is very direct
_ and simple in principle. However, implementation in many
and @ instances presents problems of specific kinds.

W0 - Consistent with a frequent finite difference notation, a
Arix - function [ evaluated at any x is often written f(x)=/.. At a
point, distance / to the right f{x+/A)=f.... To the left we
have fo_p, fem, etc. Alternatively, nodes (or pivotal points)
arc numbered 7 vielding function values f3, fi 4, fi. etc. Itis
understood that the distance between nodes is 7 and node 7
corresponds to a particular x. Refer to Fig. 1. The derivative

=df/dx, at any specificd x, may be approximated by the
forward difference formula

fz+h - fx

£io=20 — 1Y
. (3L

where the function is evaluated explicitly at these two points.
This, for very small /1, corresponds to our intuitive notion of
B aderivative. Equally, the derivative may be expressed by the

L backward difference formula

I = r T Seh (32)

; These are, in gencral, not equal. The first. in our example,
gives a Jow value and the second a high value. We can there-
fore cxpect the average value
{h f —vh —

1 = : (33)
2h
- to give a closer estimate. This expression is the central differ-
- ence formula for the first derivative. In the figure, we sce that
- the forward and backward differences give slopes of chords

~ on alternate sides of the point being considered. The central
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Fig. 1. Forward, backward, and central ditferences.

diiference, given by the slope of the chord passing through
forn and fo_y, certainly appears to approximate the true de-
rivative most closely. Usually, this is so. Forward and back-
ward difference formulas are required to compute derivatives
at extreme ends of series of tabulated duta. The central dif-
ference formula is preferred and should be used if data arc
availuble on both sides of the point being considered.

An idea of the accuracy of (31) (33} is obtained from a
Taylor’s expansion at x+A. This gives

Jern = fo b RES AR W el (B3
Stmilarly, al x—#

Jeoi = fo — BID 4 3R
Subtracting £ from (34), then rearranging, gives

£ = Afein — [0 — b
= (foon — f2)7/0 + OR).

0(/) means that the leading correction term deleted from this
forward difference derivative approximation is of order A.
Similacly, from (35), the backward difference formula can
be seen to be of order I as well.

Subtracting (35) from (34), and rearranging, we oblain

Jlo= Fren — fea) /2R — §0Y 4 - -
w= (fopr — Foon) 20+ 007

which is the central difference lormula (33) with a leading
error term or order A% Assuming that derivatives are well
behaved, we can consider that the A2 term js almost the sole
source of error. We see that decreasing the interval results
in higher accuracy, as would be expected. In addition, we see
that the crror decreases quadratically for the central differ-
ence derivative and only linearly for the forward or back-
ward difference ones.

Only two of the thres pivotal points shown in Fig. 1 were
needed for evaluating the first derivative. Using the three
available pivots, a second derivative may be computed. Con-

— AR A (33)

VRArteE L.,
—'Sh'lr

{36)

(37)
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sider the derivative at x-+7/2. Using central differences, with
half the previous interval,

(Jesn = ) /D (38)

fa:,+h/2 =

Similarly,

fiue = (Jo = fe=n)/R (39)

giving the values of the first derivative at two points distance
h apart. The second derivative at x is then

S (10)

= (fx-i»h - 2fx + fx—h)/h?

in which (33) has been applied with (38) and (39) supplying
two first derivative values. By adding (34) and (35), (40) may
be derived with the additional information that the error is

of order /.
Another point of view for understanding finite difference

differentiation is the following. Assume that a parabola

f(x) = ax* +bx + ¢ (41)
is passed through the three points fz—n, fz, and feta of Fig. 1.
For simplicity let x=0. Evaluating (41) at x=—1, 0, and h,
we easily find that

a=(Hh—2f+ fon)/2R%, 42)

b= (fa = J-1)/2h, (43)
and

¢ = fo (44)

Differentiating (41), then setting x=0, we find we get the
same forms as (33) and (40) for the first and second deriva-
tives. Thus, differentiation of functions specified by discrete
data is performed by fitting a polynomial (either explicitly
or implicitly) to the data and then differentiating the poly-
nomial. It is clear then that an nth derivative of a function
can be obtained only if at least n+1 data points are avail-
able. A word of warning—this cannot be pursued to very
high orders if the data is not overly accurate. A high-order
polynomial, made to fit a large number of approximate data
points, may experience severe undulations. Under such cir-
cumstances, the derivative will be unreliable due to higher
order terms of the Taylor series. Also note that accuracy of
4 pnumerical differentiation cannot be indefinitely increased
by decreasing h, even if the function can be evaluated at any
required point. Differentiation involves differences of num-
bers that are almost equal over small intervals. Due to this
cause, roundoff error may become significant and so the
lower limit to / is set largely by the computer word length.

Bearing in mind that high-order polynomials can cause
trouble, some increase in accuracy is possible by using more
than the minimum number of pivots required for a given
derivative. For example, as an alternative to (40), the second
derivative can be obtained from

' = (—sz‘.‘h‘*" 1Gf1—h - 30f:+ 1()fr+ R —.f:r"r"l’l)/ 1272 (4'3)

with an error of O(hY).
Not always are evenly spaced pivotal points available.
Finite difference derivative operators are available for such
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oi,itl

Fig. 2. Five point, finite difference operator.

cases as well. This is obvious as approximating polynomials
can be fitted to data not equispaced. For example, if pivots
exist at x—h, x, and x—+ah (where « is a real number), an
appropriate derivative expression is

9

F4

ala 4+ A3
which is identical to (40) when o= 1. However, if a1, (46)

and other differentiation equations for unsymmetric pivots
have reduced accuracy.

The preceding, and many other differentiation expressions,
are given in [12, pp. 64-87]. For instance, since numerical
differentiation involves the determination and subsequent
differentiation of an interpolating polynomial, there is no
ceason that the derivative need be restricted to pivotal

£
z =

(O‘fx—h - (1 + a)f: + fr+h) (40)

points.
Finally, the most important derivative operator for our

purposes is the Laplacian V2 In two dimensions it becomes
v 2 Acting upon & potential ¢(x, y) we have
9% 9%

4 (47)
9x*  ay*

Vie =

where x and y are Cartesian coordinates. Using a double
subscript index convention, and applying (40) for each
coordinate, the finite difference representation of (47) is

veo = Bi i1 + ¢i-1g — 4;1::/ j_‘_¢i+1,j + di-1 (1)

Fig. 2 illustrates this five point, finite difference operator
which is appropriate for equispaced data. Often it is neces-
sary to space one Or more of the nodes irregularly. This is
done in the same fashion employed in the derivation of (46)
[12, pp. 231-234]. Finite difference Laplacian operators are
also available in many coordinate systems other than the
Cartesian. For example, see [12, pp. 237-252].

B. Integration

Numerical integration is used whenever a function cannot
casily be integrated in closed form or when the function 15
described by discrete data. The principle behind the usu
method is to fit a polynomial to several adjacent points a0
integrate the polynomial analytically.

Refer to Fig. 3 in which the function f(x) is expressed DY
data at n equispaced nodes. The most obvious integration
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WEXLER: COMPUTATION OF ELECTROMAGNETIC FIELDS

fix)

%[fi,,+4fi+f|+i}

Dty \\‘:\—"‘
b 1

X

Fig. 3. Integration under the curve fix). Trapezoidal rule for a sinzle
strip and Simpson’s 1/3 ruie for pairs of strips.

formula results by assuming that the function f(x) consists of
piecewise-linear sections. Each of these subareas is easily
computed through

A= f Flde = -f‘ (fio1 -+ fo (4}
r,—h -
where x; is the value of x at the ith pivot. The total arca is
found by summing all 4, Equation {49) is the trupezoidal
rule for approximating the area under one strip with error of
order #.
The trapezoidal formula (49) may be applied, sequentially,
to a large number of strips. In this way we obtain

w b
J jde 2= o+ HAfot o foot + 2y (30}

which hus a remainder of order /2. The decrease in accuracy,
compared with the single-strip case, is duge to error accu-
mulated by adding all the constituent subareas.

A more accurate formula (and perhaps the most popular
one) is Simpson’s § rule

3
A"l = _,_ (__ri-_t-]_ + ” + fi— l) [-’}l)

which, by using a parabola, approximates the integral over
two. strips to O(k*). If the interval (a, #) is divided into an
even number of strips, (S1) can be applied at each pair in
turn. Therefore

v b }
J Flayede = ‘—: (fo+4fi + 2y 4 oy 4+
* ’ + Efnv—:: + ‘lfn—l i fn)

with an error of 0(/"). Another Simpson's formula, known
as the & rule (because the factar § appears in it), integrates
groups ol three strips with the same aceuracy as the } rule.
Thus, the two Simpson’s rulzs may be used together to cater
for an odd number of strips.

By and large, integration Is a more reliable process than
differentiation. as the error in integrating an approximating
polynomial tends to average out over the interval,

{5
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errar

error - L7 error

mesh interval h

Tig. 4, Error as a function of mesh interval.

It is not possible to indefinitely reduce i with the cxpecta-
tion of increased accuracy. Although smaller intervals reduce
the discretization error, the increased arithmetic cuuses
larger roundofl error. A point s reached where minimum
total error occurs for any particular algorithm using any
given word length, This is indicated in Fig. 4.

Iighly accurate numerical integration procedures are pro-
vided by Gauss™ quadrature formulas [7, pp. 312-367].
Rather than using predetermined pivot positions, this
method chooses them in order to minimize the error. Asa
result, it can only be used when the integrand is an explicit
function.

Multiple integration [12, pp. 198-206] is, in theory, a
simple extension of one-dimensional integration. In practice,
beyond double or triple integration the procedure becomes
very time consuming and cumbersome.

To integrate
b
V= f j Fagthindyy 33)

over the specified hiniits, the region is subdivided (sec Fig.
5(a)). As one would expect, to perform a double integration
by the trapezoidal rule, two applications of (49) are required
for cuch clemental region. Tntegrating along x, over the ele-
ment shown, we obtain

o N
g = i + ferrs) i54)

h
Firl = “)— (ff.;.,_l —!—fs -_-1.;{-1}- {55}

It now remains to perform the integration

) Hi+L I )
Vo= f tlyy = > (g, + & L)
S o
12
= N (Feg+ s+ s+ e

which results from iwo applications of the trapezoidal rule.

p—
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ié fﬂhf: f{x,yhdx dy

=

"

Daouble integration molecules. (a) Trapezoidal rule.

Fig. 5.
(b} Simpson’s 1/3 rule.

Similarly, three applications of Simpson’s § rute produce

I
1»" = —

0

{ l(x_j";lj + ‘.Llift',j-- 1 -I_ fi-i 1y + ,rt‘.i:’-l + fi—l.J'}
4 fipti—t A fiengin + Fovgm + fe .1.;'—1}

o

)
[

which gives the double integral of /., over the elemental two
dimensional region of Fig. 5(b). Muolecules in the figure
illustrate the algorithin.

1V. FINITE DIFFERENCE SOLUTION OF
PARTIAL IIFFERENTIAL EQUATIONS

The finite difference technique is perhaps the most pop-
ular numerical method for the solution of ordinary and
partial differential equations. In the first place, the differen-
tial equation is transformed into a difference equation by
methods described in Section 1T1. The approximate solution
to the continuous problem is then found ecither by solving
large systerns of simultancous linear equations for the
deterministic problem or by solving the algebraic eigenvalue
problem as outlined in Section 11. From the point of view
of fields, the resulting solution is then vsually a potential
function ¢ defined at a finitc number of points rather than
continuously over the region.

A. Boundary Conditions

The most frequently occurring boundary conditions are ol
several, very general forms. Consider, first of all, the Dirich-
let boundary condition defined by

$(5) = g(s)

which states the values of potential at ali points or along any
number of segments of the boundary. Sec Fig. & which
represents a general two-dimensional region, part of it obey-
ing (58). If we visualize this region as a sheet of resistive
material, with surface resistivity 7, the Dirichlct border is
simply one naintained at & potential g(s). At ground poten-
tial, g(s)=0 which is the homogeneous Dirichlct boundary
condition.

(58)
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Dirichlet boundary

s =gls)  — |- A
T % s
SO N
-+ ]—{h-l—l
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boundary 2% |. (s} el ek
an sp st T -

Fig. 6. A mixed boundary value problem.

The Neumann boundary condition
a9

a \ P 59

= pls)
is also casy to interpret physically. Imagine current to be
forced into the region, [rom across the boundary, at a rate
independent of the potential. A large number of constant
current sources, strung along the houndary, would simulate
this effect. The normal, lingar current flow density is —7.(s),
the negative sign signifying a flow direction in a scnse oppo-
sitc to the unit normal. The surface resisiivity r divided into
the normal electric field strength at the boundary /a1,
= —u(8), e (l;"r)_,.-"(%f.-"ﬂn)!1 .= —i.{s). Another analogy is
the flux emanating from a distributed sheet of charge backed
by a conductor. In general then, the Neumann boundary
condition is written as in (59). Alongan impermeable border,
an open circuit in Fig. 6, p()=0.

The remaining boundary condition, of concern (o us, is
the Cauchy (or third) condition. Tmagine that the border is
a film offering resistance R to current flowing across it. Such
4 fijm occurs in heat trunsfer between, say, a metal and a
Auid. A scries of resistors strung out across the boundary
would simulate such an effect. Let the potential just outside
the conducting region be ¢ofs), @ function of position along
the curve, The potential just inside is ¢(s)y and so the linear
current density transferred across is i,_.(s):(cia(s)—qbo(s))/R
where R is the film resistance. Since (11 (9, 8.'1)| o= — (),
we have by eliminating id8), (R ;’f.?');"'(f)d)f/(']!i)| o o(5) = Pols)-
In general, this is written

ad

anl.

+ o{x)¢ls) = qls). (60)

A harmionic wave function ¢, propagating into an infinite
region in the z direction, obeys d¢/dz=—ji¢ or ap/dz--jBe
— 0 at any plane perpendicutar to 7. This is a homogeneous
case of (60},

A region having two or more types of boundary conditions
is considered to constitute a mixed problem.

B. Difference Equations of the Elfiptic Problem
Second-order partial diflerential cquations are f:ﬂi“'c'

niently classified as elliptic, purabolic, and hypcrbol_lc [1’2,

pp. 190-191]. Under the elliptic class full Laplace's, Poisson 3

— b

e e e m
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$ls)=v
2 3
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sl =0

Fig. 7. Finite dillerence mesh for solution of Laplace’s equation under
Dirichlet boundary conditions.

appropriate schemes. See for example [28], |34, pp. 198~
204], (35, pp. 262-266], [37, pp- 36-42].

Tn reference [27] a simple, although somewhat inaccurate,
method for fitting an arbitrary shape is given. For simplicity,
the boundary was permitted to deform, at each horizontal
mesh level, to the nearest node point.

A crude-mesh difference scheme, for the solution of
Laplace’s equation under Dirichlet boundary conditions, is
shown in Fig. 7. The appropriate difference equations can
be written in matrix form in the following fashion:

) WEXLER: COMPUTATION OF ELECTROMAGNETIC FIELDS
and the Helniholtz partial diffcrential cquations. By way of
. illustration, we will now consider the first and last ones.
. Fig. 6 shows several five-point operators in somewhat
typical environments. To be specific, consider the discretiza-
tion of Laplace's equation
Vip =0 (61)
consistent with the applied boundary conditions. From (48),
(61) becomes
¢)ﬂ -+' ¢b - :léc —[_ ¢J + ¢'6 = n (6‘3)
A reasonably fine mesh results in a majority of equations
having the form of (62). The trouble occurs in writing finite
difference cxpressions near the boundaries. Neur the Dirich-
fet wall we have ¢; = g(s1) where sy denotes a particular point
on 5. Making this substitution, the finite difference cxpres-
sion about node f is
)
by = dds+ G+ b= — g (63)
e where sy and node f coincide. Along the Neumann boundary,
te (59) must be satisfied. To simplify matters for illustration,
it the five-point operator is located along a flat portion of the
w wall, Using the central difference formula (33), (39) becomes
")9 JE— -— -
" r—4 1 0 1 0 0
(o
i, 1 -4 1 0 1 0
is . 0 1-4 0 0 1
xd
_ 1 [o -t 1 0
y
)T, 0o 1 1 —4 1
0 0 0 1 —4
5
> o ¢ 0 1 0 0
i .
ch . 0 0 0 0 1 0
L
a .
"(?; (¢1— )/ 2= p,. This equation can then beu sed to eliminate

node I from the difference cquation written about node m2.
Therefore

o $1 — ddm + 260 + b0 = — P 61)

5), Finally, at the Cauchy boundary, (p.— @) 2t =4

5). which makes the node 7 difference equation :

b0+ 2, — AL+ o/, + ¢ = — g (63)

30) SOR is employed to solve for each node potential in terms

~ of all other potentials in any given equation. As there are at

e most five potentials per equation, cach node is therefore

'_:3¢ written in terms of its immediately adjacent potentials. In

Jlus ; other words, it is the central node potential of cach operator
s

1VE-
12,
n's,

that is altered in the itcrative process. As all points on 2
Dirichlet boundary must maintain fixed potentials, no
operator is centered there. This does not apply to Neumann
and Cauchy boundaries, however, and so potentials on these
walls must be computed.

It is no mean feat to program the logic for boundaries
(particularly non-Dirichlet ones) which do not correspond
to mesh lines, and this is one of the mujor drawbacks of the
finite difference approach. The liferature gives a number of

O 0 [é -2
0 0] ¢ —
0 G| o — 2
i 0 ¢ —p 66)
] &5 0
011 ¢ -
—4 13 ¢ 0
1 —allgd L ol
or
A& = b. (67)

There arc several significant features about (66). In the first
place, there are a fairly large number of zeros. In a practical
case, the mesh interval in Fig, 7 would be much smaller and
the square matrix would then become very sparse indecd. In
addition, the nonzero elements of any row of the square
matrix and any element of the right-hand side vector may be
easily generated at will. 1t is clear thercfore that SOR {or
any similar itcrative scheme} is the obvious cheice for solv-
ing the system of lincar equations. All computer store may
then be reserved for the & vector and the program, thus
allowing for a very fine mesh with consequent high accuracy.
Certainly, a direct solution scheme, such as triangularization
and back substitution, could not be considered feasible.
Green [36] discusses many practical aspects and problems
associated with the solution of Laplace’s equation in TEM
transmission lines. Seeger [42] and Green describe the form
of the difference equations in multidielectric regions.
Now, let Fig. 7 represent an arbitrarily shaped waveguide.
For this purpose, the boundaries must be closed. The tech-
nique is to solve for a potential ¢ in finite dilference form.
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If = is along the axial direction, . is proportional to E. or
H, depending on whether TM or TE modes are being con-
sidered. For TM modes the boundary condition is the
homogeneous Dirichlet one (58), ie., with g(s)=0. Fields
are then derived from

— ¥
ST Vi
I, =¢
) {1%)
_ Jwe
= —— 4 X Vi
H.=10

ift E, is made equal to ¢. Likewise, the homogencous Neu-
mann condition (59} (with p(s)=0) applies to TE modes,
with ficlds obtainable from

_ Foupd

o= J—J— fh, X Vi

E =0 ,
(69)

— ¥

111 = = _,I' 0' VI‘b

" = ¢

k. is the cutoff wavenumber and v the propagation constant.
Of course, one does not solve for ¢ but rather for &, a vector
of discrete potentials, and so the differentiations indicated
by (68) and (69) must be performed by techniques outlined
in Section H1-A,

Discretization of the Helmholtz equation

(Fve+ LMo =0 (70
produces a matrix cigenvalue problem of the form

(4 —=2Dao — 0. (71)

About a typical internal node soch as 5 in Fig. 7, the finite
difference form of (70) is

—pr— o+ N — g — ¢ =0 ()
where
No=s lf_f]-.‘l.;‘l)?. \(T“;)

Equations such as (72), suitably amended for boundary con-
ditions, make up the set expressed by (71). Signs are changed
in (72} to make, as is the frequent convention, the matrix
positive semidefinite rather than negative semidefinite.
Successive overrelaxation can be used to solve the matrix
cigenvalue problem (71). Tn the first place a fairly crude
mesh, with perhaps 50-100 nodes, is “drawn’” over the guide
cross section. A guess at the lowest eigenvalue (cither an
educated one or perhaps the result of a direct method on an
even coarser mesh) is taken as a first approximation. The
clements of vector ¢ are sct to some value, perhaps all uoity.
SOR is then initiated generating only one row at a time of
A—xI as required. A nontrivial solution of (4—X\N¢ can
exist only if the determinant vanishes, i.c., the guess at } is

a true eigenvalue. In general, the A estimate will be in error
and so o cannot be found by SOR alone and an outer
iteration employing the Rayleigh quotient (defined later)
must be employed.

Application of SOR to a homogeneous set of equations
causes (14) to assume the form

G = Loagim {7

The subscript \ has been added to the jteration matrix (o
indicate a further functional dependence. As in Section T1-B,
for illustration, assume that £, is a real (generally non-
symmetric) matrix with distinct eigenvalues, Then, ¢™
may be expressed as a finear combination of eigenvectors of
.Q,.J,_;\. i‘ﬂ.,

G = a4k + - 0t + andn. (7H)
Iterating through (74} s times, we find that

@it = ayrls F @l T 0 0 T Gutin®le (70)

If g, is the eigenvalue having the greatest absolute value,
then if s is large, we have substantially that

T

b = myulh. {77}

Equation (74) must represent a stationary process when SOR
has converged and so g1=1 at the solution point. It is inter-
csting to note that the cigenvector Iy of £, 15, of is propor-
tional to, the required eigenvector of A when the correct X
is substituted into (71).

Rewrite (71) as

Bo =10 (7%)
where
B L — M (70

with an assumed or computed X approximation, The con-
vergence theorem [34, p. 240] states that if B is symmetric
and positive semidefinite, with all diagonal terms greater
than zero {which can always be arranged unless onc of them
vanishes), and if the correct X is employed, then the method
of suceessive displacenents (SOR with w=1) converges to
the solution whatever & is initially. It will also converge
[34, pp. 260-262] for 0<w<2 if the elements by=b;<0
(i=f) and bu>0.

As will usually happen, an eigenvalue csiimate will not be
correct, 1f it deviates from the exact eigenvalue by a small
amount we can expect uy, in (77), Lo be slightly greater than
or less than unity. Therefore &% will grow or diminish
slowly as SOR iteration proceeds. It cannol converge to a
solution us B is nonsingular. (B is termed singular if its
determinant vanishes.) However, the important point is that
whether & tends to vanish or grow without limit, its elements
tend to assume the correct relative values. In other words,
the “shape” of ¢ converges to the correct one, After several
SOR iterations the approximate ¢ is substituted into the
Rayleigh quotient [35, pp. 74-75]

3+ M . (80)
{){r)d‘)(r}
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If z is along the axial direction, #:¢ is proportional to E; or
H, depending on whether TM or TE modes are being con-
sidered. For TM modes the boundary condition is the
homogeneous Dirichlet one (58), i.e., with g(s)=0. Fields
are then derived from

— é
E = - . Vig
E. =
- (68)

— Jwe
]I; = - /&/z X vl¢

ke
H.=0

if E, is made equal to ¢. Likewise, the homogeneous Neu-
mann condition (59) (with p(s)=0) applies to TE modes,
with fields obtainable from

Eo= "t X Vb
E.=0
(69)
Fz = - —I‘V@
H, = ¢.

k. is the cutoff wavenumber and v the propagation constant.
Of course, one does not solve for ¢ but rather for ¢, a vector
of discrete potentials, and so the differentiations indicated
by (68) and (69) must be performed by techniques outlined
in Section III-A.

Discretization of the Helmholtz equation

(V24 ke =0 (70)
produces a matrix eigenvalue problem of the form
(4 —ADo = 0. (71

About a typical internal node such as 5 in Fig. 7, the finite
difference form of (70) is

—‘¢2—¢4+(4—>\)¢5"¢e~¢s=0 (72)

where

A = (kh)® (73)
Equations such as (72), suitably amended for boundary con-
ditions, make up the set expressed by (71). Signs are changed
in (72) to make, as is the frequent convention, the matrix
positive semidefinite rather. than negative semidefinite.
Successive overrelaxation can be used to solve the matrix
eigenvalue problem (71). In the first place a fairly crude
mesh, with perhaps 50-100 nodes, is “drawn’ over the guide
cross section. A guess at the lowest eigenvalue (either an
educated one or perhaps the result of a direct method on an
even coarser mesh) is taken as a first approximation. The
clements of vector ¢ are set to some value, perhaps all unity.
SOR is then initiated generating only one row at a time of
A—M as required. A nontrivial solution of (A—\D¢ can
exist only if the determinant vanishes, i.e., the guess at \ is
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a true eigenvalue. In general, the \ estimate will be in error
and so ¢ cannot be found by SOR alone and an outer
iteration employing the Rayleigh quotient (defined later)
must be employed.

Application of SOR to a homogeneous set of equations
causes (14) to assume the form

¢(m+1) = £w.>\<’('m>- (7
The subscript \ has been added to the iteration matrix to
indicate a further functional dependence. As in Section II-B,
for illustration, assume that £, is a real (generally non-
symmetric) matrix with distinct eigenvalues. Then, 6™
may be expressed as a linear combination of eigenvectors of
Lo le.,

o™ = ady + agls + - - - A+ audn
Iterating through (74) s times, we find that
ot = ayur'ly + @l + ¢ - - F aun’lo. (76)

If u is the eigenvalue having the greatest absolute value,
then if s is large, we have substantially that

(75)

‘;)(nﬁs) — al“lslb

Equation (74) must represent a stationary process when SOR
has converged and so p1=1 at the solution point. It is inter-
esting to note that the eigenvector I of £a,x s, or is propor-
tional to, the required eigenvector of A4 when the correct A
is substituted into (71).

Rewrite (71) as

By =0 (78)

where

B=A—2 79)

with an assumed or computed X\ approximation. The con-
vergence theorem [34, p. 240] states that if B is symmetric
and positive semidefinite, with all diagonal terms greater
than zero (which can always be arranged unless one of them
vanishes), and if the correct X is employed, then the method
of successive displacements (SOR with w=1) converges to
the solution whatever ¢ is initially. It will also converge
[34, pp. 260-262] for 0<w<2 if the elements bij=b;<0
(i#)) and bi;>0.

As will usually happen, an eigenvalue estimate will not be
correct. If it deviates from the exact eigenvalue by a small
amount we can expect uy, in (77), to be slightly greater than
or less than unity. Therefore ¢+ will grow or diminish
slowly as SOR iteration proceeds. It cannot converge to a
solution as B is nonsingular. (B is termed singular if its
determinant vanishes.) However, the important point is that
whether ¢ tends to vanish or grow without limit, its elements
tend to assume the correct relative values. In other words,
the “shape” of ¢ converges to the correct one. After several
SOR iterations the approximate ¢ is substituted into the
Rayleigh quotient [35, pp. 74-75]
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Equation (80), which depends only upon the “shape™ of 4,
is stationary about the solution point. In other words, if ¢
is a rcasonable cstimate to the eigenvector then (80) pro-
duccs an improved eigenvalue estimate. The bracketted
superscripts give the number of the successive eigenvalue
estimate and are thereforc used in a different context from
that in (74). Using the new eigenvaluc approximation, and
returning to the SOR process with the most recent field esti-
mate, a second and better estimate to ¢ is found, and so on
until sufficient accuracy is obtained. Whether or not con-
vergence has been achieved may be gauged firstly by observ-
ing the percentage change in two or more successive eigen-
value estimates. Il the change is considered satisfactory, per-
haps less than one-tenth of a percent, then the displacement
porm as a percentage of the vector norm should be inspected.
(The norm of & column matrix is often defined as the square
root of the sum of squares of all clements.) When this is
within satisfactory limits, the process may be terminated.
These requirements must be compatible in that one cannot
cxpect the displacement norm to be very small if the cigen-
value estimate is very inaccurate. What constitutes sufficient
stationarity of the process is largely a matter of practical
expericnee with the particular problem at hand and no gen-
eral rule can be given. This entire computing procedure.
including « optimization, is described in |34, pp. 375-376]
and [38, pp. 114-129]. Moler |38] points out that no proof
cxists guaranteeing convergence with the Rayleigh quotient
in the outer loop. However, cxperience indicates that with a
reasonable A estimate to begin with, and with other condi-
tions satistied, we can be fairly confident.

Generally, the higher the accuracy required, the smaller
the mesh interval and the larger the number of equations to
be solved. The number of eigenvalues of £, equals the
order of the matrix and a large number of eigenvalues means
that they are closely packed together. It is therefore clear,
from {76), that if the dominant and subdominant eigenvalues
of £, (1 and u) are nearly cqual, the process (74) will need
a great number of iterations before the dominant eigenvector
“shape” emerges. In fact, successive overrelaxation corree-
tions could be so small that roundoff errors destroy the
entire process and convergence never occurs. The answer is
to start off with a crude mesh having. perhaps, ene hundred
nodes in the guide cross section. Solve that matrix eigenvaluc
problem. halve the mesh interval, interpolate (quadratically
in two dimensions, preferably) for the newly defined node
potentials, and then continue the process. The rational
behind this approach is that each iterative stage (other than
the first) begins with a highly accurate field estimate and so
few iterations are required for the fine meshes. For arbitrary
boundaries, programming for mesh halving and interpola-
tion can be an onerous chore.

As one additional point, the eflect of Neumann boundary
conditions is to make B stightly nonsymmgetric and so con-
vergence of the SOR process cannot be guaranteed. This
occasionally causes iteration to behave erratically, and some-
times fail, for coarse meshes in which the asymmetry is most
pronounced. Otherwise, the behaviour of such almost sym-
metric matrices is similar lo that of syimmetric ones. The
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most convenicnt wiay to guarantee symmetric matrices is to
employ variational methods in deriving difference cquations
near boundarics. Forsythe and Wasow [34, pp. 182-184]
give a good account of this approach.

When the solution for the first mode is obtained,
det (B)=0 with the correct A substituted into (79). If one
then wanted to solve for a higher mode, a new and greater A
estimate would be used. If this difTers from the first by a, this
is equivalent to subtracting « from all diagonal terms of B.
Now, il p is any eigenvaiue of B, then

Bé = péd. (81)
Subtracting af from both sides,
(B —aho=(p—a (82)

we sec that all eigenvalues of the new matrix (B—af) are
shifted to the left by @ units. Since B had a zero eigenvalue,
at least one eigenvalue must now be negative. A symmetric
matrix is positive definite if and only if all of its eigenvalucs
arc positive {16, p. 105] and positive semidefinite if all are
nonnegative. Therefore, (B—al) is not positive semidefinite
and so the convergence theorem is violated. Consequently,
the previous SOR scheme cannot be employed for modes
higher than the first.

Davies and Muilwyk [32] published an interesting account
of the SOR solution of several arbitrarily shaped hollow
waveguides. Typical cutoff wavenumber accuracies were a
fraction of one percent. This is an interesting result as rea-
sonable accuracy was obtained even for those geometries
containing intcrnal corners. Fields are often singular near
such points. The finite difference approximation suffers
because Taylor's expansion is invalid at a singularity. If
errors due to recnirant corners are excessive, there are sev-
cral approaches available. The reader is referred to Motz
139] and Whiting [45] in which the ficld about a singularity
is expanded as a truncated series of circular harmonics.
Duncan [33] gives results of a series of numerical experi-
ments employing different finite difference operators, mesh
intervals, ete.

An algorithm has recently been developed [27] which
guarantees convergence by SOR iteration. The principle is to
definc @ new matrix

(= BR {%3)
C is symmictric whether or not B is. Equation (78) becomes
Cp =0 {84

which is solved by SOR, Note that
det (€) = det (B) det (B) = (det (B3))° {85}

and so (84) is satisfied by the same cigenvalues and eigen-
vectors as (71) and (78).

SOR is guaranteed to be successful on (84) as C is positive
semidcfinite for any real B. Note that xx>> 0 for any real col-
umn matrix x. Substitute the transformation x= By giving
3 BBy =§Cy >0 which defines a positive definite matrix C.
If det (€)=0, as happens at the solution point, then C is
positive semidefinite and so convergence is guaranteed. This
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and [38, pp. 114 -129]. Moler [38] points out that no proof
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Generally, the higher the accuracy required, the smaller
the mesh interval and the larger the number of equations to
be solved. The number of cigenvalues of £, equals the
order of the matrix and a large number of eigenvalues means
that they are closely packed together. It is therefore clear,
from (76), that if the dominans and subdominant eigenvalues
of £, (11 and uq) are nearly equal, the process (74) will need
a great number of iterations before the dominant eigenvector
“shape” emerges. In luct, successive overreluxation correc-
tions could be so small that roundofl errors destroy the
entire process and convergence never occurs. The answer is
to start off with a crude mesh having, perhaps, onc hundred
nodes in the guide cross section. Solve that matrix cigenvalue
problem, halve the mesh interval, interpolate (quadratically
in two dimensions, preferably) for the newly defined node
potentials, and then continug the process. The rational
behind this approach is that each iterative stage (other than
the first) begins with a highly accurate field estimate and so
few iterations are required for the fine meshes, For arbitrary
boundaries, programming for mesh halving and interpola-
tion can be an oncrous chore.

As onc additional point, the effcet of Neumann boundary
conditions is to make B slightly nonsymmetric and so con-
vergence of the SOR process cannot be guaranteed, This
occasionally causes iteration to behave erratically, and some-
times fail, for coarse meshes in which the asymmetry is most
pronounced. Otherwise, the behaviour of such almost sym-
metric matrices is similar to that of symmetric ones. The
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most convenient way to guarantec symmetric matrices is to
employ variational methods in deriving difference equations
near boundaries. Forsythe and Wasow [34, pp. 182-184]
give a good account of this approach.

When the solution for the first mode is obtained,
det (B)=0 with the correct A substituted into (79). If onc
then wanted to solve for a higher mode, a new and greater A
estimate would be used. If this differs from the first by 4, this
is equivalent to subtracting a from all diagonal terms of B.
Now, if p is any eigenvalue of B, then
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sonable accuracy was obtained even for those geometries
containing internal corners, Fields are often singular near
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because Taylor's expansion is invalid at a singularity. If
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eral approaches available. The reader is referred to Motz
[39] and Whiting [45] in which the field about a singularity
is expanded as a truncated series of circular harmonics.
Duncan [33] gives results of a series of numerical experi-
ments emploving different finite ditference operators, mesh
intervals, etc.
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much is well known. The usefulness of the algorithm is that
it describes a method of deriving the nonzero elements of
one row at a time of C, as required by SOR, without recourse
to Binits entirety. It is shown that the gth row of C requires

p only the gth node point potential and those of tweive other

nodes in its immediate vicinity. The operations are expressed
in the form of a thirteen-point finite difference operator,
Thus, because storage requirements are minimal, and C is
positive semidefinite, SOR can be employed [or higher
modes.

This method requires considerably more logical decisions,
while gencrating difference equations near boundaries, than
does the usual five-peint operater. The process can be
speeded up considerably by generating (and storing) these
exceptional difference equations only once for each mesh
size. In this way, the computer simply selects the appropriate
equation for each node as required. In the internal region,
difference equations are generated very quickly so that stor-
ing them would be wasteful. This is an entirely feasible
approach because nodes near boundaries increase in num-
ber only as ' while the internal ones increase as F ¢t
approximately. This boundary-node storage procedure
would likely be profitable for the five-point difference
operator as well,

The method can be adapted to the deterministic problem
(67). Normally, this would not be required, but if one at-
tempts higher order derivative approximations at the bound-
ury, for the Neumann or Cauchy problem, SOR often [ails
{37, pp. 50-33]. Because it guarantees positive definitenass,
u suggested abbreviation is PDSOR.

Recently, Cermak and Silvester [29] demonstrated an
approach whereby finite differences can be used in an open
region. An arbitrary boundary is drawn about the field of
interest. The interior region s solved in the usual way and
then the boundary values are altered iteratively, until the
effect of the boundary vanishes, Theo, the solution in the
enclosed spuce corresponds to a finite part of the infinite
region,

Davies and Muilwyk [40] have cmployed finite differences
in the solution of certain waveguide junctions and discon-
tinuities. The method is applicable when the struciure has a
constant cross scction along one coordinate. If this is so,
the ports are closed by conducting walls and their fimte dif-
ference technique for arbitrarily shaped waveguides [32]
may be used. A limitation is that the ports must be sufli-
ciently close together so that one seeks only the first mode in
the newly defined waveguide. Otherwise, SOR will fail as
described previously.

C. Purabolic and Hyperbolic Problems

Prime examples of these classes of diflerential cquations

are furnished by the wave equation
1 2%

Vip = — — )
¢ ¢t of? ®5)

.which is hyperbolic and the source-free diffusion equation

1
Vig = — — (87)

which is parabolic. Note that if ¢ is time harmonic, (86)
becomes the Helmholiz equation. If ¢ is constant in time,
both becomes Laplace’s equation.

The solutiens of partial differential equations (86) and (87)
are the transient responses of assoclated physical problems.
The solution of (86) gives the space-time tesponse of a scalar
wave function, Equation (87) governs the transient diffusion
of charge in a semiconductor, heat flow through a thermal
conductor, ot skin effect in an imperfect electrical conductor
[78, pp. 235-236]. K is the diffusion constant. It is a function
of temperature, mobility, and electronic charge or thermal
conductivity, specific heat, and muass density, depending
upon the physical problem. For example, il a quantity of
charge (or heat) is suddenly injected into a medium, the
clectric potential (or temperature} distribution is given by
the solution of (87). The result ¢ is a function of space and
time,

Such problems are more invelved computationally than
the elliptic problem is, due partly to the additional indepen-
dent variable, The function and suflicient time derivatives at
t=0 must be specified in order to climinate arbitrary con-
stants produced by integration. It is then theoretically pos-
sible to determine ¢ for all 7. Problems specified in this way
are known as initigl-ealue problems. To be really correct, the
partial differential equation furnishes us with a boundary-
value, initial-value problem,

The finite difference approach is to discretize all variables
and Lo solve a boundary value problem at each time step.
For simplicity, consider the one dimensienal diffusion equa-
tion

_8' "D_ — _l.: E.](’b (88)
g K #
To solve for ¢{x, ), the initial value ¢{x, &) and boundary
conditions, say, ¢{Q, N=0 and (d¢/5x)| ,..a=0 are given.
Discretization of (88) gives

Tt b Gand Gia T g0
K Kb o

where /1 and & are the space and time intervals respectively.,
Rather than the central difference formula for second deriva-
tives, forward or backward differences must be used at the
boundary points--unless Dirichlet conditions prevail.

The first of cach subscript pair in (89) denotes the node
number along x and the second denotes the time-step num-
ber. Thereflore

i=0,1,2 ---

J=0,1,2 ..

s
Rearranging (8%9)
$rgir = bis+ r{ioni— 205 T iy (o1
with
r = K/t (92)

Tn Fig. 8, the problem is visualized as a two-dimensional
region, onc dimension ¢ being unbounded. This algorithm
presents an explicit method of solution as each group of
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much is well known. The usefulness of the algorithm is that
it describes a method of deriving the nonzero elements of
onerow at a time of C, us required by SOR, without recourse
to B in its entirety. It is shown that the gth row of C requires

only the gth node point potential and those of twelve other

nodes in its immediate vicinity. The operations are expressed
in the form of a thirteen-point finite difference operator,
Thus, because storage requirements are minimal, and C is
positive semidefinite, SOR can be emploved for higher
modes.

This method requires considerably more logical decisions,
while generating difference equations near boundaries, than
does the usual five-point operator. The process can be
speeded up considerably by generating (and storing) these
exceptional difference equations only once for cach mesh
size, In this way, the computer simply selects the appropriate
cquation for euch node as required. In the internal region,
difference equations are generated very quickly so that stor-
ing them would be wasteful. This is an entirely feasible
approach because nodes near boundaries increase in num-
ber only as /! while the internal cnes increase as A?
approximately. This boundary-node storage procedure
would likely be prefitable for the five-point difference
operator as well.

The method can be adapted to the determinisiie problem
(67). Normally, this would not be required, but if one at-
tempts higher order derivative approximations at the bound-
ary, for the Neumann or Cauchy problem, SOR often fails
[37, pp. 50-53]. Becuuse it guarantees positive definitencss,
a suggested abbreviation is PDSOR,

Recently, Cermak and Silvester [29] demonstrated an
approach whereby finite differences can be used in an open
region. An arbitrary boundary is drawn about the field of
interest. The interior region is solved in the vsval way and
then the boundary values are altered iteratively, unul the
cileet of the boundary vanishes. Then, the solution in the
enclosed space corresponds to a finite part of the infinite
region.

Davics and Muilwyk [40] have employed finite differences
in the solution of certain waveguide junctions and discon-
tinuitics. The method is applicable when the structure has a
constant cross section along one coordinate. If this is so,
the ports are closed by conducting wulls and their finite dif-
ference technique for arbitrarily shaped waveguides [32]
may be used. A limitation is that the ports must be suffi-
ciently close together so that one seeks only the first mode in
the newly defined waveguide. Otherwise, SOR will fail as
described previously.

C. Parabolic und Hyperbolic Prablems

Prime examples of these classes of differential equations
are furnished by the wave equation

v2¢ = —— —— 86]
et ( .

.which is Jyperbofic and the source-free diffusion equation

1
Vig = — —- (87)

which 18 parabolic. Note that il ¢ is time harmonic, (86)
becomes the Helmholiz equation. If ¢ 15 constant in time,
both becomes Laplace’s cquation.

The solutions of partial differential equations (86} and (87)
are the transicnt responscs of associated physical problems,
The solution of (86) gives the space-time response of a scalar
wave function. Equation (87} governs the transient diffusion
of charge in a semiconductor, heat flow through a thermal
conductor, or skin effect in an imperfect electrical conductor
(78, pp. 235-236). K is the diffusion constant. It is 4 function
of temperature, mobility, and electronic charge or thermal
conductivity, specific heat, and mass density, depending
upon the physical preblem. For example, il a quantity of
charge (or heat) is suddenly injected into a medium, the
electric potential (or temperature} distribution is given by
the solution of (87). The result ¢ is a function of space and
time.

Such problems arc more invelved computationally than
the elliptic problem is, due partly to the additional indepen-
dent variable. The function and sufficicnt time derivatives at
t=0 must be specified in order to eliminate arbitrary con-
stants produced by integration, It is then theoretically pos-
sible fo determine ¢ for all £ Problems specified in this way
are known us initial-valie problems. To be really correct, the
partial differential equation furnishes us with a boundary-
value, initial-value problem.

The finite difference approach is to discretize all variables
and to solve a boundary value problem at cach time step.
For simplicity, consider the one dimensional diffusion equa-
tion

e Lo 88)
g K i
To solve {or ¢(x. #), the initial value ¢(x, ) and boundary
conditions, say, ¢0, =0 and (9¢/dx)
Discretization of (88) gives

—1=0 are given.

i1 — 2¢i<j + ‘i’i-i—l-f _ ¢‘i.j—-l - ‘i’l‘-.‘-l'

s K

(89)

where /i and & are the space and time intervals respectively.
Rather than the central difference Tormula for second deriva-
tives, forward or backward differences must be used at the
boundary points— unless Dirichlet conditions prevail.

The first of each subscript puair in (89) denotes the node
number along v and the second denoles the time-step num-
ber. Therelore

t=0,1,2, -

F=0,1,2---.

ro=h;
{00}
i gl
Rearranging (89)
Gigi1 = dug T (i — 200 b digrg) o3y
with

o= Ni/h (42)

In Fig. 8, the problem is visualized as a two-dimensional
region, one dimension ¢ being unbounded. This algorithm
presents an explicit method of solution as each group of
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Fig. 8. Finite difference mesh for explicit solution
ol an initial value problem.

three adjacent pivots can be used to predict one potential at
the next time step. In this way, the solution is advanced in
time as fong as required or until error accumulation becomes
unaceeptable.

There is a stabifity criterion that must be satisfied. It can
be shown that the explicit method with one space coordinate
is valid only when 0<<r<{. This restriction, in conjunction
with (92), indicates that the increased amount of computing
required for improved accuracy is considerable. T 21s halved
then A must be quartercd. The stability criterion is still more
stringent for problems having two space dimensions, requir-
ing that < r<1. The explicit solution of the wave equation
is also subject to i stability constraint.

Another approach, known as the Crank-Nicolson method,
requires the solution of all node potentials before advancing
the time step. Tt is unconditionally stable and so docs not
require terribly fine time intervals. This advantage is partially
offset, however, by Lhe fact that all potentials at each time
step must be solved as a system of simultancous, linear
equations, Thus it is called an implicit method. The final
result is that the implicit method is some three or four times
faster than the explicit one.

The reader will find very finc introductions to this subject
in [12] and [44]. Three books, dealing generally with finite
differences and with special sections of interest here, are (31},
[34], and [35]. In [30] and [41], initial value problems are
discussed. Recently, Yee [46, pp. 302-307] reported some
results on transient electromagnetic propagation.

It is disappointing to note that in spite of the great amount
of work done on the subject, in practice the solution of many
initial value problems exhausts the capabilities of modern
digital machines, Problems having two spatial dimensions
can easily tuke many hours to solve with moderate accuracy.
Forsythe and Wasow [34, pp. 11-14] have estimated one
week for such a problem having 10 000 nodes. Using a mod-
ern computer, the time would be reduced to perhaps one-
third of that. A threc-dimensional problem, solved in fine
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detail, could casily take 1000 years! There appears to be an
answer, however, and that is through Aybrid computation,
the subject of Section V1.

D. Integral Eguations

As an alternative to posing a problem in terms of partial
differential equations, it may be cast into the form of an
integral equation. This approach is particularly useful for
certain antenna problems where the Green’s function is
known in advance. Its efficacy is questionable in arbitrarily
shaped closed regions because the numerical solution of the
Green's function, {or each source point, is as diflicult as the
solution of the original problem itself. The integral approach
is therefore vseful in many frec-space studics, and when the
Green's function may be found analytically without too
niuch troubie,

Insofar as this scetion is concerned, it is suflicient to point
out that the finite dilference approach can be used. For a
thin, arbitrary antenna, the integral

' » G—_;'F.'R.
‘.-12=,uj Fo-ooodl .
¢ xR {5

gives the z component of vector potential. R 1s the distance
between the source and the observation point, ie.,

B= | —rl| (1)

If the antenna is excited by a source at a given point, the ap-
proximate current distribution can be computed. This is
accomplished by assuming £, to be constant, but unknown,
over each of the » subintervals. The integration in (93) is per-
formed with the trapezoidal rule, thus producing an equation
in i unknowns, Enforcing the required boundary conditions,
n equations are produced and so the unknowns ure found by
solving u set of simullaneous, linear equations. (Higher
order integration schemes may be used if the current distri-
bution ulong each subinterval is presuned to be described
by a polynomial.) With the current distribution known, the
potential may be calculated at any point in space.

A good, descriptive introduction is furnished by [53]. In
[47], [49]-[51], and [54] the solution of integral equations,
in radiation and scattering problems, through matrix
methods is deseribed. Fox [35] discusses mathematical and
practical aspeets of Fredholm (corresponding to the elliptic
problem) and Volterra (initial-value problem) integral equa-
tions. The quasi-TEM microstrip problem s dealt with in
[48] and [52]. The mujor difficulty is the derivation of the
Gireen's function ; the numerical problem is insignificant by
COMparisod.

Variational methods (Section V) offer another approach
to the solution of integral equations.

V. VARIATIONAL METHODS

This subject, although not terribly new, is becoming
increasingly importunt for several reasons. In the first place,
it is relutively easy to formulate the solution of certain dif-
ferential and integral equations in variational terms. Sec-
ondly, the method is very accurate and gives good resulls
without making excessive demands upon computer storc and

A
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time, The solution is found by selecting a field which mini-
mizes a certain integral. This integral is often proportional to
the encrgy contained in the system and so the method em-
bodies a close correspondence with the real world.

The literature on variational methods is so scattered that
there is good reason to collate and review the principles here.
It is hoped that by reviewing these ideas, and relating them
to mictowave problems, the engineer will be encouraged to
make immediate and more general use of them. Otherwise,
the injtiate could well spend many months accumulating the
required information before being able to apply it.

The following theory is concerned almost exclusively with
the solution of scalar potentials. Obviously then, static fields
are the immediate beneficiaries. In addition, time-varying
fields, that may be derived from a single vector potential,
are also easily catered for. Although there are some indica-
tions of how to proceed, the author has not seen any general
computer methods for fields with all six components of
clectric and magnetic field present. Such ficlds require both
an electric and magnetic vector potential function to gen-
erale them. Perhaps it would be just as well to solve the
clectric and magnetic fields directly rather than through two
potential functions.

A. Hilbery Function Spaces

The concept of a Hilbert function space is, in principle,
very simple and most useful as well. It consisis of a set of
functions that obey certain rules. Typically, we will con-
sider those functions belonging to this space as being all
those that are possible solutions of any particular field prob-
lem we wish to solve. For example, the field within a three-
dimensional region bounded by a perfectly conducting sur-
face. having some distribution of charge enclosed, is the
solution of the Poisson equation

~Tig = (05)

E

¢ is some funetion of position, i.c., ¢(P). We know that the
solution must be ane of or a combination of functions ol the
form u(P)=sin (Jr/a)x-sin (mx/b)y-sin (nr/c)z in a rec-
tangular region. a, b, and ¢ are the dimensions of the rec-
tangular region and £, m, and # arc integers, If the conduct-
ing boundary of the box is held at zero potential any one or
summation of harmonic functions u will vanish at the walls
and will likewise give zero potential there. These compo-
nents of a Fourier series are akin to vector components of a
real spacc insofar as a summation of particular proportions
of Manctions yields another function whereas vector sunima-
tion of components defines a point in space. Thus, a sum-
mation of harmonic “components™ of the above form de-
fines a particular function which, by analogy, we consider
to be a point in an abstract function space. For this reason,
such functions are often called coordinate functions, The
number of dimensions may be finite or perhaps infinite. The
Fourier series is an example of a particular function space
consisting of orthogonal coordinate functions. In general,
however, these functions need not be orthogonal.

The requirements we have placed upon functions belong-
ing to the function space is that they be twice diflerentiable
(at lcast) and that they satisfy the homogeneous Dirichlet
condition ¢(s)=0 at the conducting walls. Such functions
are considered to belony o a lincar set. By this is meant that
if any two functions u and v belong to the set, then u-+ ¢ and
av (where a is a constant) likewise belong to it. In other
words, the functions u+ 2 und @v are also twice differentiable
and satisfy the relevant boundary conditions.

An inner product

{u, v}y = fut-‘*df’. (56)

LT

is defined which, in a scnse, gives the “component™ of onc
function in the “direction’ of the other. This appears rea-
sonable when we recall that it is precisely in this way that a
Fourier component, v (omitting, for the moment, the com-
plex conjugate™) of an arbitrary function u is found. It is
really here that the analogy between vector and function
spaces becomes obvious. The reason for including the com-
plex conjugate sign will be shown in a moment, The integra-
tion is performed over 2 which may be a one, two, or three-
dimensional physical space depending on the problem. In
our example, the limits correspond to the walls. If u and v
are vector functions ol position, we alter (56) slightly to
include a dot between them, thus signifying the integral of
the vector product u-v. In this work, however, we will con-
sider them to be scalars although the generalization of the
subsequent derivations should be fairly straightforward.

In addition to linearity, functions that are elements of a
Hilbert space must satisfy the following axioms. For cach
pair of functions # and ¢ belonging to the linear set, a num-
ber {u, v is generated that obeys the following axioms:

(u, vy = {r, wi®; {97)

(g + toteg, 1) = axlug, 0) 4 @i, vd; (08)

{1, wy = 0 {04}
it

fu,uy = 0 then u =0 {100}

Note that the definition of inner product (96) salisfies re-
quirements (97) (100) for all well-behaved functions. Note
also that in a real Hilbert space (ie.. one spanncd by real
functions), {, v)= {(», ). From axioms (37) and (98) it is
easy to see that

O ary = o, = a¥{u, v 1010}
LM, 'y 1

where a is a complex number here.

As a result of these definitions it is clear that an inner
product whose factors are sums can be expanded according
to the rules for nultiplication of polynomials. The essential
difference is that the numerical coefficient of the second fac-
tor must be replaced by its complex conjugate in carrying it
outside of the brackets,

1t is clear now why the complex conjugate must be en
ployed in axiom (97). Property (99) states that (u, w20
Therelore, due to the lincarity of the function space, neW
elements au must also satisfy {ou, au)>0 where a is any
complex number. If property (100) were of the form (i, ¢}

tic
ds

di
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= (r, ) then we would have that (ay, au)y = a2, 1) which,
for arbitrary complex a, would be u complex quantity and
not positive ar cqual to zero, perhaps even negative. Thus
(99) would be violated.

In the following. we will assume implicitly that the #orm
of each function, defined by

el = T ) {102)

is finite. The operation beneath the radical is akin to the
inner product of a vector with itsell and so 1| is, by anal-
ogy, a measure of the “length™ or “magnitude™ of the func-
tion. Insofar as a field is concerned, it is its rms valuc.

B. The Extrenmun Formulation

Among elliptic differential equations, therc are two classes
we arce interested in: the deterministic and the eigenvalue
problem. Forsythe and Wasow (38, pp. 163-164] point out
that variational approaches are “computationally significant
for elliptic problems but not for hyperbolic problems.” They
leave its application to parabolic problems open. The prin-
ciple behind the varintional method in solving eHiptic prob-
lems rests on an approach which is an alternative to direct
integration of the associated partial differential equation.
The latter approach is often attempted by means of a
Green's function conversion of a boundary value problem to
an integra) cquation, It frequently becomes overly compli-
cated, if not altogether impossible to handle, because the
Green's function itself is difficult to derive. On the other
hand, a variational formulation presents an alternative
choice--to find the function that minimizes the value of a
certain integral. The function that produces this minimal
value is the solution of the ficld problem. On the fuce of it
the alternative seems as unappealing as the original problem.
However, due to certain procedures available for determin-
ing this minimizing function, the variational formulation has
great computational advantages. In addition, convergence
can be guaranteed under certain very broad conditions and
this is of considerabls theoretical and numerical conse-
qUenCe.

Hustrative of the generality of the method is the use of a
general operator notation L. In practice, a great variety of
operations may be denoted by this single letter.

1) The deterministic problem: The deterministic problem
Is written

FATEE {10:3)
where f=f(P} is a function of position. I
L= = v {104
and
-2 (105)
¢

is 2 known charge distribution, we require to find «, the
solution of the problem under appropriate boundary condi-
tions. {The minus sign in (104) makes the operator positive
definite, as will be shown.} Commenly, these boundary con-
ditions take the forms (538)-(60). In the first instunce we will

431

concentratc on certain homogeneous boundary conditions,
i.c., (538)-(60) with g=p=¢=90.

1f =0, (103) becomes Laplace’s cquation. (L= — (¥4 k)
then (103) represents one vector component of an inhomo-
seneous Helnholtz equation. u is then one component of the
vector potential and f is an impressed current times .

To begin the solution, we must consider a sct of alt func-
tions that satisfy the boundary conditions of the problem
and which are sufficiently differentiable. Each such element
u of the space belongs to the field of definition of the operator
L. Symbolically, #= D, We then scek a solution of (103)
from this function space.

We consider only self-adjoint operators. The self-adjoint-
ness of £ means that (Lu, #)— (i, L), in which », v Dy, is a
function of v and » and their derivatives on s only. (s is the
boundary of @ and may be at infinity.) To have a self-
adjoint problem we must have

{Lagy vy = {u, Ly (1163}

Tt will be seen that (106) is required in the proof of the min-
jmal functional theorem and therefore is a requirement on
those problems treated by variational methods in the
fashion described here. Whether or not an operator js self-
adjoint depends strongly upon the associated boundary
conditions.

n addition, the sélf-adjoint operator will be required to
be positive definite. The mathematical meaning of this is that

e, ny > 0 {107)

whenever u is not identically zevo and vanishes only when
u=0.

The significance of these terms is best illustrated by a
simple example. Let [ = — V% Therefore

(g, 0y = — f FANERIE A {108)

For convenicnce, take & and # to be real functions. Green's

identily
Y odu - )
J p—fs = f Vi Vet + f RIS 1Y
. A 1 ot
canverts (108) to the form
_ y *du
(L, vy = J V- Tinftl — J ORI (110}
o s Oi

in which the last integration is performed over the boundary.
n is the outward normal. The one-dimensional analogue of
(110) is integration by parts. Similarly

) , dr
{u, Lo} Tf Vi Vedth — fu—-- il
' & Jaofn

Under either the homogencous Dirichlet or Neumann
boundary conditions, the surface integrals in (110} and (111)
vanish. Under the homogeneous Cauchy boundary condi-
tion, they do not vanish but become equal. At any rate, L is
therefore self-adjoint under any one of these boundary con-
ditions or under any number of them holding over various

(13}

o
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sections of the boundary. Property (106) is akin to matrix
synunetry.

Positive definitencss of L is readily obscrved by making
w=v in (110) and substituting any of ths previous homo-
sencous boundary conditions. An additional requirement,
for the homogeneous Cauchy condition to satisfy (107), is
that ¢> 0.

It is a consequence of thesc properties that we can make
the following statement: if the operator L is positive definite
then the equation Lw=f cannot have niore than one solu-
tion. The proof is simple. Supposc the equation to have
two solutions m; and us such that Lin=/ and Lu,=f. Let
=1, — M. Since the operator is a linear one (a further
requirement) we obtain (L, vh=0. Since L is positive
definite, we must then have w=0and so 1=y, thus proving
that no morc than one solution can cxist. This is simply a
general form of the usual proofs for uniqueness of golution
of boundary-value problems involving elliptic partial dif-
ferentiul equations.

For the solution of a partial diffcrential equation, it was
stated carlier that we will attempt to minimize 2 certain
integral. The rule for forming this integral, and subscquently,
ascribing a value to it, is a particular example of a finctional.
Whereas a function produces a number as a result of giving
values to one or more of independent variables, a {unctional
produces a number that depends on the entire form of one
or more functions between prescribed limits. [t is, 1n a sense,
some measure of the function. A simple example 15 the inner
product {1, ©}.

The functional we are concerned with, for the solution of
the deterministic problem, is

Foe (L,w) — 200, 13 (112}

in which we assume that 1 and £ are real functions, The more
gencral forn, for complex functions is

Fo= (T, — o, S — {f,uk
A WL y

It is seen that the last two terms of (113) give twice the real
part of {u,f}. Concentrating on (112), we will now show that
if L is a positive definite operator, and if ZLu=f has a solu-
tion, then (112) is minimized by the solution te. (The proof of
(113 is not much more involved.) Any other function e Dy,
will give a larger value to F. The proof follows.

Tuke the function g to be the unique solation, i.c.,

(113}

Farg = . {114}
Substitute (114) into (112) for £. Thus
Fo= (T, uh — 2{n, Lato). (115}

Add and subtract (L, 1) to the right-hand side of (115)and
rearrange noting that if L is self-adjoint (Lte, uy= (L, 1o} In
a real Hilbert space. Finally, we obtain

F o= {L{u — wg),u — e} — (L, o) {116)

As L is positive dcfinite, the last term on the right is positive
always and the first is > 0. F assumes its least value if and
only it w=uw, To summarize, this minimal functional
theorem requires that the operator be positive definite and
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self-adjoint under the stated boundary conditions. It is also
required that the trial functions come from the field of defi-
nition of the operator L; i.e., they must be sufficiently dif-
ferentiable and satisfy the boundary conditions. Otherwise,
a function, which is not a solution, might give a lesser value
to F(1) and defude us into thinking that it is a better approx-
imation to the solution.

From (116), note that the minimal value of the functional

is
lwrnin = = (-'-’4'?-"-03 '?.{-[3) (117)
which occurs lor the exact solution . Taking L= —V*, we
get
‘Vmin =f 1“-0v2u0d£! (118)
Y

where the integration is over a volume £
#(5)=0. Therefore, using Green's theorem,

Now, say that

Frin = — f | Vo |0 (119)
0

This integral is proportional to the encrgy stored in the

region. The field arranges jtself so as to minimize the con-

tained energy!

The most common approach, used for finding the mini-
mizing function, is the Rayleigh-Ritz method. As it relics
upon locating a stationary point, we wish to ensure that
once such a point is located, it in fact corresponds to the
solution, This is important because a vanishing derivative is
a necessary, although not a sufficient condition for a mini-
mun In other words, if 2 function we& Dy causes {112) to
be stationary, is t then the solution of (103)}? k is casy to
show that this is so. Let

§lel = Flua + en) — £{uq) (120}

where ¢ is an arbitrary real number. Using (112), substitut-
ing the appropriate expressions, and taking L to be sclf-
adjoint, we obtain

ale) = Z2elluy — Iy + e2{La, 7

(121)
after some algebraic manipulation. Differcntiating
8 _ .
}_ = ?(;’r"”(] - .rl 'ﬂ} _+_ Qfgﬁ?"ﬂ (l??‘)
de

which must vanish at a stationary point. By hypothesis, this
occurs when e=0, therefore

{(Lug — fymy = 0.
If this is to hold, for arbitrary m, then we must have that
Lug={ identically. In other words, the stationary point cor-
responds to the solution.

2y The eigenvalie problem; Functional (115) cannot
a priori be used for the cigenvalue problem

T = Au

(123)

(14)

becausc the right-hand side of (124) is not 2 known function
as is £ in (103). The relevant functional, for the eigenvalu®
problem, is
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Lu,
F=< i, U

(125)

where #& D;. Equation (80) is one particular instance of it.
1tis often called the Rayleigh quotient, If Fyj. is the lowest
pound, attained for some u, £0, then Fni=X is the lowest
cigenvalue of operator L and u is the corresponding eigen-
[unctiOI'l.

The proof of the preceding statements is quite direct. Let
q be an arbitrary function from the field of definition of
operator L, ie., 7= D;. Let a be an arbitrary real number.
herefore i+ ane Dr. We want to investigate the conditions
under which F is stationary about . Substitute

U = Uy + an (1206}
into {125) giving

+

 (Llut ), i+ am)

(197)
{uy - am, u+ an)

As 1 and ¢ arc fixed functions, F is a function only of e
Differentiate (127} with respect to a. Then, by hypothesis,
the derivative vanishes when a=0. We therefore get

{Luy, ni(een, iy — (Lacy, vy, my = 00 {128)

With F= Fyia and =, substitute {Lay, ) from (125) into
{(128). Rearranging '
. <L1.{-1 — Mmin W1, T}) = 0. U_)O)

- - Bince 7 is arbitrary,

LU]_ — Fantt = 0 (1'-;0)

and $o Fin is the lowest eigenvalue \; and i the correspond-
ing eigenfunction. Tt is fairly easy to show [62, pp. 220-221]
_that if the minimization of (125) is attempted with trial
functions u orthogonal to ta, in the scnse

(e, 1wy = 0,

that F,,;, equals the second cigenvalue Ny. Similarly, defining

a Hilbert space orthogonal to i and i, the next eigenvalue

and eigznvector results, and so on.

© As the minimum of {125) corresponds to the lowest eigen-

valuc ), we can rewrite the functional in the following form:
(’T‘uj u> PR

AL —— (132)
(u, w) ‘

The numerator of (132) is positive as L Is a positive definite

We know that (133) is an cquality only for the correct cigen-
Value and eigenfunciion. Consequently, the left-hand side is
Otherwise greater than zero. Therefore, as an alternative Lo
Minimizing {125), we can seek the solution of (124) by mini-
Mizing

I= {Ln, ey — A, w; (134
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instead. Successive cigenvalues and eigenvectors are found
by defining orthogonal spaces as before.

The differential equation, whose solution is a minimizing
function, is known as the Euler’s equation. We are interested
in finding functionals whose Euler’s equations we wish to
solve, c.g., the Helmholtz equation, Laplace’s equation, ete.

C. Inhomogeneous Boundary Conditions

In solving Lu=f we have considered homogeneous bound-
ary conditions exclusively, Such a restriction causes the
more important problems (c.g., multiconductor Jines at
various potentials) to be excluded. This happens because
self-adjointness eannot be proved. Substitute (58), say, into
the surface integrals of (110) and {111} to verify this state-
ment. In addition, the space is nonlincar as well.

Let us cxpress inhomogeneous boundary conditions in the
form

Bu g = by, Boely = bay « - (135)

wlhere the B; are linear operators and the b, are given [unc-
tions of position on the boundary. Equations (38)-(60) are
the most common examples. The number of boundary con-
ditions required depends upon whether or not i 18 a veetor
and upon the order of the differential equation.

Assume that 1 function of position w exists which is suffi-
ciently differentiable and satisfies boundary conditions (135).
1 is not necessarily the solution. As w satisties the boundary
conditions,

Buol, = by, Bagl = by - o - {156)

Putting
(137)

(138)

roe o o— o,

By, =0, By

R:O

as the B; are linear operators. We have now achieved homo-
gencous boundary conditions.
Tnstead of attempting a solution of

Iw =1f (139)
we cxamine
" :;r(_” ;f.-} (140)
Let
fr=f=Le (141)
and so we can now attempt a solution of
Ly ={, (14:22)

under homogeneous boundary conditions (138). In any par-
ticular case, it still remains to prove sclf-adjointness for
operator L with functions satisfying (138). 1 this can be
accomplished, then we may scek the function that minimizes
F o= (L, — 20, [ (113)

Substitute (137) and (141) into (143). After expansion,
Fo=ihuons — 20§+ (o Laey — (Lo}

_ REREEE)
-+ 2, fr — e, wy, ’
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fisfixedand wisa particular function selected (which we
need not actually know). Therefore, the Jast two terms are
constant and can play no part in minimizing the functional
as we have assumed that u is selected from the set ol func-
tions that satisfies the required boundary condition. Other-
wise 1 would depend on #. The last two terms may be deleted
from (144) because of this.

It now remains to examine {t, Lw}— {Lu, w) in the hope
that 1 and w may be separated. If this attempt is successful,
then an amended version of (144) may be written which
excludes the unknown .

Let us illustrate these principles with a practical ex ample.

Solve
—vu = f (143)
under the boundary condition
u(s) = g(s)- (146)

The symmetrical form of Green's theorem is

. . du au -
(Vi ~— uVie)dil = e = —— ) s (147)
i . an

i
where 71 is the external normal to s. Therclore, the third and
fourth terms of (144) are

fag, Ty — {Lu, w) :f {10V i — u Rk
Iy

{148}
i Jue
== f (w —_—— —)rr’s.
. an A
Since
wls) = ws} = gls} (144)
we have
dn dw .
Ge, L) — (Luyw) = f (g ----- — --—)fr’s. {150
N dn dn

Only the first term on the right-hand side of (150) is a func-
tion of 1. In addition to meglecting the last two terms of
(144), the last term of (150) may be disregarded as well. We
are then left with a new functional to be minimized

i
r u Vit — 2 ffuu’!! + [y - ds, (131D
! < a Joon

Simplify (151) using identity (109)

' au
F= ;V:.Llsdﬂ — | u—ds+
Jog s N
— 2f Suefsl,
i

Because of (146}, the second and third integrals cancel and
we are left with

I —_-f ]Vu,[g.-fﬂ - 2 f“r:{.(ffl
4] LY

which is to be minimized for the solution of (145) under
inhomogeneous boundary cenditions (146). It happens, in
this case, that (153) has the same form that homogeneous
boundary conditions would produce. It alse turns out, here,

P= -

(153)
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that the existence of a function w was an unnecessary
assumption.

Although we shall not demonstrate it here, functionals
may be derived for the inhomogencous Neumann and
Cauchy problems. It is also not too difficult to formulate the
solution of clectrostatic problems involving media that are
functions of position.

D. Natural Boundary Conditions

Thus far, we have reguired that triaf functions substituted
into (112) should each satisfy the stipulated boundary con-
ditions. Except for the simplest of boundary shapes, such a
constraint makes it practically impossible to select an ap-
propriate set of trial functions. Tt turns out, however, that
au,?’ﬂn| =) and aa;,-’an| Ao (s)uls) = g(s) are natural bound-
ary conditions for the operator L= — v The meaning of this
is that we are now permitted to test any sufficiently differenti-
able functions with the certainty that the mimmal value
attained by (112) will be due to the solution and none other,
On the other hand, we cannot entertain this confidence under
the Dirichlet boundary condition.

It is easy to show this for the homogeneous Neumann
problem. The form of the functional is

r =f (|V.=.-. [9 — 2 u)d. {131}
Substitute = 1g+-an where n need not be in the field of
definition of L. Differcntiate with respect to «, make =90,
and set the result to zero. Finally, employing Green’s
formula,

, . due I
r 7 Wiwa -+ 1 — fn —ds= 0. (1565}
Joa . dn
Nowhere has n been required to satisfy boundary condi-
tions. As n is arbitrary (155) can hold only if — Vie=f and
dug/on=0. Thus the solution is lound with appropriate
boundary conditions.

E. Solution by the Rayleigh-Ritz Method

A number of Munctionals have been derived, the minimiza-
tion of which produce solutions of differential or integral
equations. The remaining question is how to Jocate the mini-
mizing function. The most popular approach is the Ray-
leigh-Ritz method.

Assume a finite sequence of » functions

Un = Z ai¢f (156]
=1

where the a; are arbitrary numerical coefficients. Substitute
(156) into (112). Therefore

P = \/ i af}—‘d}.f: i G';.-ﬁbk\! -2 / i a5¢J':f\
N e Kot ! \ j=1 / (1..]?.)
. ,‘Z_:

Jk=1

(Lg;, prdasan — 2 20 {85 ety
i=1

We now wish to select coellicients a; so that (157) is a min-
imum, i.e.,
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Al _ .
-— =1 t=1,% - n {158)
dats
Rearranging (157) into powers of a,,
1“‘ = (L¢'i, d»)!')aig _}_ Z (Lq:’f, ¢k}('h(!:;
; \J‘I)‘E . . -
+ 57 (L, poaias — 20f, don (154}

drd
+ terms not containing a,.

Now, write & instead of j in the second summation. and
assuming that L is self-adjoint

F o= {Lés, ot + 2 2 {ads, dudtivs

ke
— 2{f, pai b -

Dillerentiating (160) with respeet Lo ¢, and setting equal to
ZCTO

(160)

Z <L¢‘.! q[”t' > g = ('r| ¢'i> (16})
k=1
where i=1,2, - - -, . Writing (161) in matrix form
‘V(r}{;(.")]_, lﬁl) e {Lfbi- ‘}f)ri:J ‘_‘al (fs ¢’J-:J—
‘ - = (162)
L<L¢'l: ¢’1:} T (’T""‘J)Hr q!}’i} ‘,(1’,, {f: (Jb“}

which may be solved for the coellicients ay, @y, » « +, @ by
the methods of Section 11-A4.

By a very similar approach [62, pp. 226-229], [63, pp.
193-194], the Rayleigh-Ritz method applied to the eigen-
value problem gives :

(‘r‘(ﬁls ¢!} — ‘\((:bis (x‘-[]l} et {:]4.¢1] fbrt} - v\<¢1; (}5“}'7
<L¢)“'¢1.‘} — R<('bl'l| ¢'1> ot <L¢;4, (!bl'l} - -f\<¢al, ¢r¢> R
(163)
ety
=4
a‘l

which is u matrix eigenvalue problem of form (21). I the
trial functions are orthonormal, the cigenvalue X occurs only
alony the diagonal giving

(Lor, @" — M1, d1y - - - (L1, ¢}

e <L¢'m ';b"l} - A(d)ﬂ! ¢'u>

t

‘f “.} }
o, dn (164)

i

:
=
o

Iy

Similarly, (162) would have diagonal terms only, giving the
solution by the Fourier analysis method.

Because the functions are all real and the operator is sell-
adjoint, from (97) and (106) we sec that both the 4 and B
Matrices are symmctric. Also, B is positive definite which
Permits it to be decomposed, as in (23), using real arithmetic
only, thus resulting in an eigenvalue problem of form (22},

Tt can be shown that (162} and (163) approach the solution
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of Lu=f and Lu=)u as n approaches infinity. In practice,
the matrices necd not be very large for a high degree of
accuracy to result. Notice also that these matrices are dense.
These characteristics determine that direct methods should
be employed in their solution.

. Some Applications

The bibliography lists several useful references for the
principles of variational methods. See, for example, [s8].
[61], and [63]. One of the most detailed treatments avail-
able is [62].

Bulley [57] solves the TE modes in an arbitrarily shaped
guide by a Rayleigh-Ritz approach. The series of trial fune-
tions, representing the axiul magnetic field, are each of the
form xp* thus constituting a two-dimensional polynomial
over the waveguide cross section. Obviously, these trial fune-
tions cannot be chosen to satisfy all boundary conditions.
However, it turns cut that the homogencous Neumann con-
dition (which A, must satisfy) is natural and so no such con-
straint need be placed on the trial functions. On the other
hand, the homogencous Dirichlet condition (which is im-
posed upon E.) s not satisfied naturally and so Bulley's
method is inapplicable in this case. If the guide boundary is
fairly complicated, a single polynomial has difliculty in ap-
proximating the potential function everywhere. In such a
case, Bulley subdivides the waveguide into two or more fairly
regular regions and solves for the polynomial cocflicients in
cach. In doing this, his approach is virtually that of the
finite-element method. Tt differs from the usual finite-clement
mcthod in the way that he defines polynomials that straddle
subdivision boundaries while others vanish there.

Thomas [67] solves the TE problem by the use of Lagrange
multipliers. In this way, he permits afl trial functions while
constraining the final result to approximate the homoge-
neous Dirichlet boundary condition. Although not essential
to his method, he employs a polar coordinate system with
polynomials in r and trigonometric & dependence.

Another possible approach, when boundary conditions
are not natural, is to alter the functional in order to allow
trial functions to be unrestricted [64, pp. 1131-1133].

By a transformation, Yamashita and Mittra [68] reduce
the microstrip problem to one dimension. They then solve
the fields and line capacitance, of the quasi-TEM mode.

The finite clement niethod is an approach whereby a region
is divided into subintervals and appropriate trial lunctions
arc defined over cach one of them. The most convenient
shape is the triangle, for two-dimensional problems, and the
tetrahedron in three dimensions. These shapes appear to
offer the grealest convenience in fitting them toegether, in
approximating complicated boundary shapes, and in satisty-
ing boundary conditions whether or not they arc natural.

Silvester [65]. [66] has demonstrated the method in wave-
guide problems. An arbitrary waveguide is divided into
triangular subintervals [65]. If the potential is considered to
be a surface over the region, it is then approximated by an
array of planar triangles much like the lacets on a diamond.
Higher approximations are obtained by expressing the
potential within each triangle by a polynomial [66].

Because of high accuracy, the [inite clement approach
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appears  useful for three-dimensional problems without
requiring cxcessive computing [69].
The method was originally expounded for civil engineer-

.1g applications [70], [71], but has rccently seen increasing

application in microwaves (e.g., [55], [56] as well as the
previous references).

Other implementations of variational methods are de-
scribed in [59] and [60].

V1. HyBRID COMPUTATION

In Scction IV-C two methods lor the solution of Initial
value (transient) problems were introduced. Through the
explicit approach, one is able to predict the potential of any
node at the next time increment as a function of a few adja-
cent node potentials. The disadvantage is that a stability
constraint demands very small time steps. On the other
liand, the implicit method does not suffer from instability,
and permits larger time steps, but requires sintultaneous solu-
tion of all node polentials for each step. As a result, both
techniques are very time constming and sometimes impos-
sibly slow,

The hybrid computer offers a significantly different ap-
proach to the problem. Tt consists of two major parts: -an
analog and a digital computer. The analog is 1 model that
obeys the same mathematical laws as the problem being
considered. So the analog, which is presumably casier to
handle, simulates the response of the system being studied.
More precisely, the particular form of analog intended here
K known as an efectronic differential analyzer. By connecting

lectronic units (which perform integration, multiplication,

ctc.) together, it is possible to solve ordinary differential
cquations under appropriale initial conditions [74]. The
solution is gwiven as a continuous waveform. Whereas the
digital computer will solve the problem in a number of dis-
crete time-consuming steps, the analog gets the answer
almost immiediately, The analog computer 13 faster; it is a
natural ordinary differential equation solver.

This is fairly obvious for an ordinary differential equation,
but how is a partial differential equation to be solved? Con-
sider a one-dimensional diffusion equation

s (163)
exr® A
(Many of the following comuments apply to the wave equa-
tion as well) Discretize the spatial coordinates at the jth
node. We have, using ceniral differences,

M e = 260 i) (166)
by i i1 2y 95:5.1 . )

At boundaries, forward or backward diflerences must be
used.

We have thercfore reduced the partial differential equa-
tion to a system of ordinary differential equations, one at

.1(:11 node point. This is known as the DSCT (discrete-space-

ontinuous-time) analog  technique. Other formulations
exist as well. The time response of the potential at £, ic.,
¢:(#), may be found by integrating (166). Other lunctions of

ddh{t)
ne at

Fig. 9. Single node, DSCT analog of the one-
dimensional diffusion eqoation.

10

Fig. 10, Simultaneous solution of the one-dimensional diffusion equa-
tion, by DSCT analog, with four internal nodes.

time ¢y o{f) and ¢..1(f) are forcing functions which are as
yet unknown, Assume, for the moment, that we know them
und let us see how the analog computer can produce the time
response ¢{{)-

Fig. 9 indicates, symbolically, the operation of an analog
computer in solving {166). Circles indicate multipliers, the
Jarger triangle represents an integrator, and the smaller one
an inverter. Assume that fanclions ¢ () and ¢;4(r) are
known, recorded perhaps, and played back into the inte-
grator with the initial value ¢ (). They are all multiplied by
1 /4% and fed into the integrator in the ratios indicated. This
is then integrated giving

"

L

1 [
6 = = [ (bl = 2600 + gt (167
L
In fact, the integrator produces the negative of (167), ie.,
—¢df). This is led back thus completing the circuit and
allowing the process to continue 1o any time 7, An inverter
foliows the integrator to alter the sign if required.

We do not, of course, know the forcing functions ¢i_i(7)
and ¢ 1(1). They are the responses of adjacent nodes, and
they in turn depenri upon foreing functions defined at other
nodes, However, the boundary conditions ¢o(t) and )
arc known in advance as well as the initial conditions ¢4{0)
for all nodcs, orf ¢{x, 1) where =0,

To solve the cntire finite difference system at one time
requires as many integralors as there are internal nodes
available. This is demonsirated in Fig. 10. (The factor 1/A*is
incorporated into the integrators for simplicity.) What this
scheme does, in fact, is to solve a system of four coupled
ordinary differential equations #n parallel. The analog has
two obvious advantages: 1) rapid integration; and 2)
parallel processing,

In order to reduce discretization error, one increases the
number of nodces. If the intention is to solve all node potet-
tials simultaneously, duc to the limited number of integrators
available, the number of nodes must be small. One alterna-
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tive strategy is to attempt an iterative technique reminiscent
of the digital rclaxation procedure. This is done by making
an initial guess at the transient response of each internal
node, frequently choosing just constant time responses as
shown by the uppermost curve in Fig. 11. Having made this
initial guess at cach nede's time response, each ¢.(f) is solved
sequentially as described previously. Each ¢4(4), upon being
solved, is transmitted via an ADC (analog-digital converter)
to the digital computer where it is stored as discrete data in
time. Attention is then focused upon nede i4-1 with adjacent
potential responses transmitted from store through DAC
(digital-analog conversion) cquipment. 8.,(/) is then com-
puted by the analog with the smoothed ¢{1) and ¢y «(7)
acting as forcing functions, The fiow of data is indicated by
arrowheads in Fig. 11, In scquence then, node transient
responses are updated by continually scanning all nodes
until convergence is deemed (o be adequate. In effect, this
procedure involves the solution of coupled ordinary differ-
ential equations, one for each node, by iteration.

An additional refinement is to sclve, not one node poten-
tial at a time but groups of them. The number that can be
catered for is, as pointed out before, limited by the amount of
analog equipment available. This paralfe! processing speeds
the solution of the entire problem and is one of the ad-
vantages over the purely digital scheme. Furthermore, be-
cause of the continuous time response (i.e., infinitesimal
time steps), we have an explicit method without the disad-
vantage of instability,

Parallcl solution of blocks of nodes is the logical approach
for two dimensional initial valuc problems. Fig. 12{a) shows
one possible format involving the solation at nine nodes.
Forcing functions correspond to solutions at the twelve
nodes excluded from the enclosed region. The set of nodes
being considered would scan the region with alterations to
the block format near boundaries. The making of such log-
ical decisions, as well as sloruge, is the job of the digital com-
puter.

Hsu and Howe [75] have presented a most interesting
feasibility study on the solution of the wave and diffusion
equations by hybrid computation. The procedures mentioned
above are more fully explained in their paper. Hsa and
Howe did not actually have a hybrid computer availuable at
the time of their experiments; their results were obtained
through a digital simulation study. Hybrid computation of
purtial differential cquations is still in its early stages and
little has been reported on actual computing times. How-
ever, some preliminary reports indicate speeds an order of
magnitude greater than digital computing for such problems.

An intriguing possibility, for hybrid solution of the elliptic
problem, is the method of lines. The mathematical theory is
presented in [62, pp. 549-566]. The principle behind it is
that discretization is performed along one coordinate only,
in a two-dimensional problem, giving us a sequence of
strips (Fig. 12(b)). In three dimensions, two coordinates are
discretized, producing prisms. We thus obtain a number of
- Coupled difference-differential equations. Each equation is
then integrated under boundary conditions at each end of its
Strip and with forcing functions supplied by adjacent strips.
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Fig. 11, Tierative DSCT sotution of the diffusion equation.

Fig. 12, (a) Itcrative, parallel processing scheme for the initiol value

problem. (b) Method of lines for the elliptic problem.

The analog computer docs not as easily solve two-peint
boundary value problems as it does initial value problems.
A common technique is to attempt various imtial values at
one end of the strip vntil the far-end boundary condition is
satisficd. This can often be very wastelul, A better idea is to
solve cach two-point boundary value problem as two initial
value problems [7, pp. 239-240], [74, pp. 83-85]. This could
be done for each strip in lurn or perhaps in groups. The
entire region must then be scanned repeatedly, in this
fashion, until convergence occurs,

For other approaches to the solution of partial differential
equations by hybrid computation, see [72], [73], [74]. [76],
and {77]. Finally, the hybrid system makes the Monte Carlo
method [74, pp. 239-242, 360) a more attractive one.

It should be emphasized that hybrid solution of partial
dilfferential equations is still in its infancy. This section, in
part an optimistic forecast, is intended to show that digital
computing has ne monepoly and certainly should not be
considered a more “respectable™ brunch of computing. The
analog machine integrates rapidly, and the digital machine
has the ability to store information and muke logical de-
ctsions. It therefore stunds to reason that working as a pair,
each in ity own domain, substantial advantages will be
gained,

YII. CoNcLUDING REMARKS

The intention of this paper is to famibarize the reader
with the principles behind the numerteal analysis of clee-
tromagnetic ficlds and to stress the importance of a clear
understanding of the underlying mathematics. Improper
numerical technique causes one to run up against machine
limitations prematurely.

in the immediate future, emphasis should perhaps be
placed upen the development of finite difference and varia-
tional techniques for solving ficlds having all components of
electric and magnetic ficld present everywhere. To date,
with a few exceptions (e.g., [59, pp. 172-188)), most methods
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appear to permit solution only of fields deriveable from a
single scalar potential. It i3 not difficult to formulate and
solve field problems in a multidielectric region, but it may

‘ot correspond 1o the actual clectromagnetic problem. This

indicated by the continuing discussion of “guasi-TEM™
microstrip waves.

Variational methods are being implemented now to a
greater extent than ever before. Hybrid computation is
likely to assume a significant, or perhaps commanding, role
in field computation due to its greater speed and flexibility.
Almost certainly, general purpose scientific computers will
permit optional analog equipment to be added, the unalog
elements to be connected and controlled from the program.
Bevond this, it is virtuaily impossible to predict. It is futile
wishing for computer technology to keep pace with our
problem solving requirements. We have outstripped all
machine capabilitics alrcady. The greatest hope is in the
development of new numerical techniques. Due to his in-
sight into the physical processes and his modeling ability,
the engineer is ideally suited to this task.
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